Skip to main content Accessibility help

Hierarchical and Modulable Hydrophobic Folding and Self-assembly in Elastic Protein-based Polymers: Implications for Signal Transduction

  • D. W. Urry (a1), C.-H. Luan (a1), S. O. Peng (a1), T. M. Parker (a1) and D. C. Gowda (a1)...


When the hydrophobic (apolar) and polar moieties of elastomeric polypeptides are properly balanced, the polypeptides are soluble in water at lower temperatures but undergo folding and assembly transitions to increased order on raising the temperature. The temperatures, Tt, and heats, ΔHt, of these inverse temperature transitions are determined by differential scanning calorimetry for a series of elastomeric polypentapeptides: poly(VPAVG), poly(IPAVG), poly(VPGVG), poly(IPGVG), poly[0.5(VPGVG),0.5(IPGVG)] and poly[0.82(IPGVG),0.18(IPGEG)] where V = Val, P = Pro, A = Ala, G = Gly, I = lle and E = Glu.

On increasing the hydrophobicity as when replacing V(Val) by I(lle) which is the addition of one CH2 moiety per pentamer, the temperature of the transition is lowered by 15 to 20°C and the heat of the transition is increased by more than one kcal/mole, for the above examples, by more than a factor of two.

When differential scanning calorimetry thermograms are obtained on mixtures of poly(VPAVG) plus poly(IPAVG) or of poly(VPGVG) plus poly(IPGVG), it is found that the polypentapeptides self-separate, i.e., they de-mix, even though in the latter case the conformations have been shown to be essentially identical before and after their respective transitions.

When the polymer, poly[0.82(IPGVG),0.18(IPGEG)], is studied as a function of pH, increasing the degree of ionization is found to increase the temperature and to decrease the heat of the transition such that, with the correct balance of I with the variable E(GluCOO), the values of Tt and ΔHt can be made to approach those of poly(VPGVG). Acid-base titration studies indicate that less than one Glu(COO) in 200 residues can raise the value of Tt by 25°C and decrease ΔHt by 90%.

These and additional data are interpreted to mean that there exists an hierarchical hydrophobic folding, that the hierarchical hydrophobic folding can be modulated by changing the degree of ionization or by changes in a number of intensive variables, that changes in these intensive variables can be used to drive folding/unfolding-assembly/disassembly transitions under isothermal conditions, and that these unfolding/folding and disassembly/assembly transitions can be used to achieve signal transduction. This is called the ΔTt mechanism of free energy (signal) transduction.



Hide All
1. Linderström-Lang, K. U., “Proteins and Enzymes”, Lane Medical Lectures, Stanford University Press, Stanford, CA, 1952.
2. The term protein-based polymers is due to Kaplan, D. I., Marron, M. T. and Tirrell, D. T. who developed the expression in planning a symposium of the same name. These are polymers of repeating peptide sequences.
3. Sandberg, L., Leslie, J., Leach, C., Torres, V., Smith, A. and Smith, D., Pathol. Biol., 3, 266 (1985).
4. Yeh, H., Ornstein-Goldstein, N., Indik, Z., Sheppard, P., Anderson, N., Rosenbloom, J., Cicila, G., Yoon, K., and Rosenbloom, J., Collagen and Related Research, 7, 235 (1987).
5. Indik, Z., Yeh, H., Ornstein-Goldstein, N., Sheppard, P., Anderson, N., Rosenbloom, J., Peltonen, L. and Rosenbloom, J., Proc. NatI. Acad. Sci. USA, 84, 5680 (1987).
6. Urry, D. W., Progress in Biophysics and Molecular Biology, edited by Noble, D. and Blundell, T. L., (Pergamon Press, Oxford, England 1991) in press.
7. Urry, D. W., Luan, C-H., Parker, T. M., Gowda, D. C., Prasad, K. U., Reid, M. C., and Safavy, A., J. Am. Chem. Soc. 113, 43464348 (1991).
8. Urry, D. W., Gowda, D. C., Parker, T. M., Reid, M. C., Harris, C. M., Pattanaik, A., and Harris, R. D., in preparation.
9. Urry, D. W. and Long, M. M., CRC Crit. Rev., Biochemistry 4, 145 (1976).
10. Urry, D. W., J. Protein Chem. 7, 134 (1988).
11. Urry, D. W., Ultrastruct. Pathol. 4, 227251 (1983).
12. Chang, D. K., Venkatachalam, C. M., Prasad, K. U. and Urry, D. W., J. of Biomol. Structure & Dynamics 6, 851858 (1989).
13. Urry, D. W., Venkatachalam, C. M., Long, M. M. and Prasad, K. U., In Conformation in Biology edited by Srinivasan, R. and Sarma, R.H., (G.N. Ramachandran Festschrift Volume, Adenine Press, USA 1982), 1127.
14. Urry, D.W., In Methods in Enzymology, edited by Cunningham, L.W. and Frederiksen, D.W., (Academic Press, Inc., New York, New York 1982), 82, 673716.
15. Urry, D. W., Haynes, B., Zhang, H., Harris, R. D. and Prasad, K. U., Proc. NatI. Acad. Sci. USA 85, 34073411 (1988).
16. Urry, D. W. and Prasad, K U., in Biocompatibility of Tissue Analogues, edited by Williams, D.F., (CRC Press, Inc., Boca Raton, Florida 1985) 89116.
17. Prasad, K. U., lqbal, M. A., , M. A. and Urry, D. W., Int. J. Pept. and Protein Res. 25, 408413 (1985).
18. Urry, D. W., Jaggard, J., Prasad, K. U., Parker, T. M., and Harris, R. D., in Progress in Biomed. Polym. edited by Gebelein, C. G., (Plenum Publishing Co., New York, 1991), (in press).
19. Urry, D. W., Long, M. M., Harris, R. D., and Prasad, K. U., Biopolymers 25, 19391953 (1986).
20. Urry, D. W., Peng, S. O., and Parker, T. M., Biopolymers, (1991), (in press).
21. Luan, C.-H., Harris, R. D., Prasad, K. U., and Urry, D. W., Biopolymers 29, 16991706 (1990).
22. Luan, C.-H., Parker, T., Prasad, K. U., and Urry, D. W., Biopolymers 31, 465475 (1991).
23. Urry, D. W., Parker, T. M., Nicol, A., Pattanaik, A., Minehan, D. S., Gowda, D. C., Morrow, C. and McPherson, D. T., Am. Chem. Soc., Div. Polym. Mater.: Sci. and Eng. 64, 000–000 (1991) (in press).
24. Urry, D. W., Long, M. M. and Sugano, H., J. Biol. Chem. 253, 63016302 (1978).
25. Urry, D. W., Okamoto, K., Harris, R. D., Hendrix, C. F. and Long, M. M., Biochemistry 15, 40834089 (1976).
26. Pattanaik, A., Gowda, D. C., Urry, D. W., Biochem. and Biophys. Res. Comm., 178, 539545 (1991).
27. Urry, D. W., Harris, R. D. and Prasad, K. U., J. Am. Chem. Soc. 110, 33033305 (1988).
28. Urry, D. W., Hayes, L. C., Gowda, D. C., and Parker, T. M., Chem. Phys. Lett., 182, 101106 (1991).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed