Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T14:21:26.666Z Has data issue: false hasContentIssue false

Hg1−x−yMnxCdyTe Alloys for 1.3−1.8 μm Photodiode Applications

Published online by Cambridge University Press:  26 February 2011

S. H. Shin
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
J. G. Pasko
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
D. S. Lo
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
W. E. Tennant
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
J. R. Anderson
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, MD 20742
M. Gorsk
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, MD 20742
M. Fotouhi
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, MD 20742
C. R. Lu
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, MD 20742
Get access

Abstract

HgMnCdTe/CdTe photodiodes with responsivity cutoffs of up to 1.54 pm have been fabricated by liquid phase epitaxy (LPE). The mesa device structure consists of a boron-implanted mosaic fabricated on a p-type Hg1−x−yMnxCdyTe layer grown on a CdTe substrate. A reverse breakdown voltage (VB) of 50 V and a leakage current density of 1.5 × 10−4 A/cm2 at V = −10 V was measured at room temperature (295K). A 0.75 pF capacitance was also measured under a 5 V reverse bias at room temperature. This device performance based on the quaternary HgMnCdTe shows both theoretical and practical promise of superior performance for wavelengths in the range 1.3 to 1.8 μm for fiber optic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearsall, T.P. and Pollack, M.A., in Semiconductors and Semimetals, Vol.22, edited by Tsang, W.T. (Acdemic Press, 1985), pp. 174241.Google Scholar
2. McIntyre, R.J., IEEE Trans. Electron Devices ED–13, 164 (1966).CrossRefGoogle Scholar
3. Becla, P., J. Vac. Sci. Technol. A 4, 2014 (1986); S. Wong and P. Becla, J. Vac. Sci. Technol. A 4, 2019 (1986).CrossRefGoogle Scholar
4. Hildebrand, D., Kuebart, W., Benz, K.W. and Pilkuhn, M.H., IEEE J. Quantum Electron. QE–17, 284 (1981).Google Scholar
5. Verie, C.S., Raymond, F., Besson, J. and Duy, T. Nguyen, J. Cryst. Growth 59, 342 (1982).CrossRefGoogle Scholar
6. Sher, A., Chen, An-Ben and Spicer, W.E., J. Vac. Sci. Technol. A3, 105 (1985); A. Wall, C. Caprile, A. Francoisi, R. Reifenberger and H. Debska, J. Vac. Sci. Technol. A4, 818 (1986).Google Scholar
7. Shin, S.H., Pasko, J.G., Law, M.D. and Cheung, D.T., Appl. Phys. Lett. 40, 965 (1982); M. Chu, S.H. Shin, M.D. Law and D.T. Cheung, Appl. Phys. Lett. 37, 318 (1980).Google Scholar
8. Alabedra, R., Orsal, B., Lecoy, G., Picard, G., Meslage, J. and Fragnon, P., IEEE Trans. Electron Devices ED–32 (7), 1302 (1985).Google Scholar
9. Amirtharaj, A.M., Pollak, F.H. and Furdyna, F.K., Solid State Comm. 39, 35 (1981).CrossRefGoogle Scholar
10. Becla, P., Wolff, P.A., Aggarwal, R.L., Yuen, S.Y. and Galazka, R.R., J. Vac. Sci. Technol. A3, 119 (1985).CrossRefGoogle Scholar
11. Debska, U., Dietl, M., Grabeski, G., Janik, E., Kienzek-Pecold, E. and Klimkiewicz, M., Phys. Strat. Sol. (a) 64, 707 (1981).Google Scholar
12. Takayama, S. and Narita, S., Jap. J. Appl. Phys. 24 (10), 1270 (1985).CrossRefGoogle Scholar
13. Wang, C.C., Shin, S.H., Chu, M., Lanir, M. and Vanderwyck, A.H.V., J. Electrochem. Soc. 127, 177 (1980).Google Scholar
14. Gertner, E.R., Ann. Rev. Mater. Sci. 15, 303 (1985).Google Scholar
15. Dupuis, R.D., Velebir, J.R., Campbell, J.C. and Qua, G.J., IEEE, Electron. Dev. Lett. EDL–7, 296 (1986).Google Scholar
16. K. Vural (personal communication).Google Scholar