Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T18:40:10.060Z Has data issue: false hasContentIssue false

Hf-Immersion Inductively Coupled Carrier Lifetime Characterization of Furnace-Oxide Growth

Published online by Cambridge University Press:  21 February 2011

T. Boone
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. S. Higashi
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. L. Benton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. C. Kistler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. R. Weber
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. C. Keller
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. Makris
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Metal contamination of silicon substrates can lead to yield and reliability problems with gate-oxides. Carrier recombination is extremely sensitive to the presence of metals. In this study, the HF-immersion inductively-coupled carrier lifetime measurement is used to isolate contamination effects arising from typical furnace-oxidation processes commonly used in integrated-circuit manufacture. The dry-oxidation processes, commonly employed in gateoxidation, are essentially contamination free. The steam-oxidation process employed in fieldoxidation can cause severe lifetime degradation (1 ms → 30 μs). The contaminant in our particular steam-oxidation tube has been identified by deep-level transient spectroscopy to be Fe at a level of ∼ 4 × 1011 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sze, S. M., “Physics Of Semiconductor Devices”, 2nd ed. (Wiley, New York, 1981) pg. 469.Google Scholar
[2] Mishima, H., Yasui, T., Mizuniwa, T., Abe, M., and Ohmi, T., IEEE Trans. on Semicon. Manu., 2, 69 (1989).Google Scholar
[3] Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I., IEEE Trans. on Electron Dev., 39, 537 (1992).Google Scholar
[4] Verhaverbeke, S., Meuris, M., Mertens, P. W., Heyns, M. M., Philipossian, A., Grif, D., and Schnegg, A., IEEE Int. Elec. Dev. Meeting, 91, 71 (1991).Google Scholar
[5] Henley, W. B., Jastrzebski, L., and Haddad, N. F., Mat. Res. Soc. Proc., 262, 993 (1992).Google Scholar
[6] Yablonovitch, E., Allara, D. L., Chang, C. C., Gmitter, T. and Bright, T. B., Phys. Rev. Lett., 57, 249 (1986).Google Scholar
[7] Miller, G. L., Robinson, D. A. H., and Wiley, J. D., Rev. Sci. Instrum., 47, 799 (1976).Google Scholar
[8] Fukushima, E. and Roeder, S. B. W., “Experimental Pulse NMR, a Nuts and Bolts Approach”, (Addison-Wesley, 1981) pg. 394 & 414.Google Scholar
[9] Grove, A. S., “Physics and Technology of Semiconductor Devices,” (J. Wiley and Sons, New York, 1967) pg. 142.Google Scholar