Skip to main content Accessibility help
×
Home

Heterogeneous integration of Polymer Porous Photonic Bandgap Structure with Xerogel based Biochemical Sensors

  • Huina Xu (a1), Ke Liu (a1), Ka Yi Yung (a2), Frank V. Bright (a2) and Alexander N. Cartwright (a1)...

Abstract

We report the heterogeneous integration of a multifunctional sensor based on polymer porous photonic bandgap (P3BG) structure and xerogel based luminescence sensor technology. The P3BG structure was fabricated using holographic interferometry. Initially, holographic interferometry of a photo-activated prepolymer syrup that included a volatile solvent as well as monomer, photoinitiator, and co-initiator was used to initiate photopolymerization. Subsequent UV curing resulted in well defined lamellae of the polymer separated by porous polymer regions that created a high quality photonic bandgap structure. The resulting P3BG structure was then integrated with the xerogel based luminescence element to produce a luminescence sensor with a selective narrow band reflector. The prototype xerogel based luminescence sensor element consisted of an O2 sensing material based on spin coated tetraethylorthosilane (TEOS) composite xerogel films containing tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) ([Ru(dpp)3]2+) luminophore. We demonstrated enhancement of the signal-to-noise ratio (SNR) of this integrated multifunctional sensor while maintaining the same sensitivity to O2 sensing of the xerogel based element. The resulting advantages and enhanced SNR of this integrated sensor will provide a template for other luminescence based assays to support highly sensitive and cost-effective sensor systems for biomedical applications.

Copyright

References

Hide All
1. Bunning, T. J., Natarajan, L. V., Tondiglia, V. P. and Sutherland, R. L., Annual Review of Materials Science 30 (1), 83115 (2000).
2. Hsiao, V. K. S., Kirkey, W. D., Chen, F., Cartwright, A. N., Prasad, P. N. and Bunning, T. J., Advanced Materials 17 (18), 22112214 (2005).10.1002/adma.200401888
3. Lakowicz, J. R., Principles of Luminescence Spectroscopy, 3rd ed. (Springer Science+Business Media, LLC., New York, 2006).
4. Vukusic, P., Sambles, J. R. and Lawrence, C. R., Nature 404 (6777), 457-457 (2000).
5. Holthoff, E. L. and Bright, F. V., Accounts of Chemical Research 40 (9), 756767 (2007).
6. Hsiao, V. K. S., Lin, T.-C., He, G. S., Cartwright, A. N., Prasad, P. N., Natarajan, L. V., Tondiglia, V. P. and Bunning, T. J., Applied Physics Letters 86 (13), 13111313 (2005).
7. Kim, S. J., Chodavarapu, V. P., Cartwright, A. N., Swihart, M. T. and Bunning, T. J., Sensors and Actuators B: Chemical 130 (2), 758764 (2008).
8. Tang, Y., Tao, Z., Bukowski, R. M., Tehan, E. C., Karri, S., Titus, A. H. and Bright, F. V., Analyst 131 (10), 11291136 (2006).

Keywords

Heterogeneous integration of Polymer Porous Photonic Bandgap Structure with Xerogel based Biochemical Sensors

  • Huina Xu (a1), Ke Liu (a1), Ka Yi Yung (a2), Frank V. Bright (a2) and Alexander N. Cartwright (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed