Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T01:21:42.856Z Has data issue: false hasContentIssue false

Heteroepitaxy of GaAs on CaF2/Si(111) By Surface Free Energy Modulation Method

Published online by Cambridge University Press:  10 February 2011

K. Kawasaki
Affiliation:
Department of Applied Electronics, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, koji@ae.titech.ac.jp
K. Tsutsui
Affiliation:
Department of Applied Electronics, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, koji@ae.titech.ac.jp
Get access

Abstract

An epitaxial GaAs layer was grown on a CaF2 (111) by means of surface free energy modulation of CaF2 by one-monolayer-height island formation. An additional low-temperature growth at a final stage of growth of the CaF2 layer on Si(111) produced high density islands whose height was one monolayer of CaF2. This surface structure contributed to enhance wettability of overgrown GaAs. Two-step growth sequence was also examined in order to grow GaAs layer on the modified CaF2/Si(111) with good crystallinity. The electron mobility of 2,000cm2/Vs in a Si doped GaAs layer (6×1017 cm−3) was obtained by the combination of the surface energy modulation method and the two-step growth method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Siscos, S., Fontain, C. and M-Yague, A., Appl. Phys. Lett. 44, 1146 (1984).Google Scholar
2. Sullivan, P. W., Metze, G. M. and Bower, J. E., J. Vac. Sci. & Technol. B3, 500 (1985).Google Scholar
3. Tsutsui, K., Lee, H. C., Ishiwara, H., Asano, T. and Furukawa, S., GaAs and Related Compounds 1985 (Inst. Phys. Ser. 79), 109 (1986).Google Scholar
4. Tu, C. W., Forrest, S. R. and Jonston, W. D. Jr., Appl. Phys. Lett. 43, 569 (1983).Google Scholar
5. Asano, T., Ishiwara, H., Lee, H. C., Tsutsui, K. and Furukawa, S., Jpn. J. Appl. Phys. 25, L139 (1986).Google Scholar
6. Li, W., Anan, T. and Schowalter, L. J.: J. Cryst. Growth 135, 78 (1994).Google Scholar
7. Lee, H. C., Asano, T., Ishiwara, H. and Furukawa, S., Jpn. J. Appl. Phys. 27, 1616 (1988).Google Scholar
8. Ono, A., Tsutsui, K. and Furukawa, S., Jpn. J. Appl. Phys. 30, 454 (1991).Google Scholar
9. Hwang, S. M., Miyasato, K., Kawasaki, K. and Tsutsui, K., Jpn. J. Appl. Phys. 35, 1701 (1996).Google Scholar
10. Sarinanto, M. M., Yamaguchi, Y. and Tsutsu, K., Appl. Surf. Sci., 117/118, 438 (1997).Google Scholar
11. Kawasaki, K. and Tsutsui, K., Appl. Surf. Sci., 117/118, 753 (1997).Google Scholar
12. Kawasaki, K. and Tsutsui, K., Appl. Surf. Sci., 130/132, 464 (1998).Google Scholar
13. Kim, B. M., Ventrice, C. A. Jr., Merecer, T., Overney, R., Schowalter, L. S., Appl. Surf. Sci., 104/105, 409 (1996).Google Scholar
14. Sokolov, N. S., Hirai, T., Kawasaki, K., Ohmi, S., Tsutsui, K., Furukawa, S., Takahashi, I., Itoh, Y. and Harada, J., Jpn. J. Appl. Phys. 33, 2395 (1994).Google Scholar
15. Akiyama, M., Kawarada, Y. and Kaminishi, K., J. Cryst. Growth, 68, 21 (1984).Google Scholar