Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T04:03:18.207Z Has data issue: false hasContentIssue false

Heavily Carbon Doped P-Type GaAs/InGaAs Strained-Layer Superlattices Grown by Mombe

Published online by Cambridge University Press:  25 February 2011

Ming Qi
Affiliation:
Xi'an Jiaotong University, Department of Electronic Engineering, Xi'an 710049, China.
Jinsheng Luo
Affiliation:
Xi'an Jiaotong University, Department of Electronic Engineering, Xi'an 710049, China.
J. Shirakashi
Affiliation:
Tokyo Institute of Technology, Department of Physical Electronics, Tokyo 152, Japan.
E. Tokumitsu
Affiliation:
Tokyo Institute of Technology, Department of Physical Electronics, Tokyo 152, Japan.
S. Nozaki
Affiliation:
Tokyo Institute of Technology, Department of Physical Electronics, Tokyo 152, Japan.
M. Konagai
Affiliation:
Tokyo Institute of Technology, Department of Physical Electronics, Tokyo 152, Japan.
K. Takahashi
Affiliation:
Tokyo Institute of Technology, Department of Physical Electronics, Tokyo 152, Japan.
Get access

Abstract

Heavily carbon doped ρ-type GaAs/In0.3Ga0.7 As strained-layer superlattices (SLSs) with hole concentrations as high as 1 × 1020 / cm3 were successfully grown for the first time by metalorganic molecular beam epitaxy (MOMBE) using trimethylgallium (TMG), solid arsenic and solid indium. The single quantum well (SQW) and multiple quantum well (MQW) structures with different well width from 2 to 16nm were also designed to analyse the strain relaxation. The experimental results show that the SLS structures made of heavily carbon doped ρ—type GaAs and InGaAs have both of high hole concentration and small effective bandgap, which are satisfied for the application in heterojunction bipolar transistors (HBTs) as base layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weyers, M., Putz, N., Heinecke, H., Heyen, M., Luth, H., and Balk, P., J. Electron. Mater. 15, 57 (1986).Google Scholar
2. Kobayashi, N., Makimoto, T., and Horikoshi, Y., Appl. Phys. Lett. 50, 1435 (1987).Google Scholar
3. Malik, R.J., Nottenberg, R.N., Schubert, E.F., Walker, J.F., and Ryan, R. W., Appl. Phys. Lett. 53, 2661 (1988).Google Scholar
4. Kuech, T.F., Tischler, M.A., Wang, P.J., Scilla, G., Potemski, R., and Cardone, F., Appl. Phys. Lett. 53, 1317 (1988).Google Scholar
5. Chiu, T.H., Cunningham, J.E., Ditzenberger, J.A., and Jan, W.Y., Appl. Phys. Lett. 53, 171 (1990).Google Scholar
6. Saito, K., Tokumitsu, E., Akatsuka, T., Miyauchi, M., Yamada, T., Konagai, M., and Takahashi, K., J. Appl. Phys. 64, 3975 (1988).Google Scholar
7. Yamada, T., Tokumitsu, E., Saito, K., Akatsuka, T., Miyauchi, M., Konagai, M., and Takahashi, K., J. Cryst. Growth 95, 145 (1989).Google Scholar
8. Abernathy, C.R., Pearton, S.J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett. 55, 1750 (1989).Google Scholar
9. Konagai, M., Yamada, T., Akatsuka, T., Nozaki, S., Miyake, R., Saito, K., Fukamachi, T., Tokumitsu, E., and Takahashi, K., J. Cryst. Growth 105, 359 (1990).Google Scholar
10. Konagai, M., Yamada, T., Akatsuka, T., Saito, K., Tokumitsu, E., and Takahashi, K., J. Cryst. Growth 98, 167 (1989).Google Scholar
11. Benchimol, J.L., Alexandre, F., Gao, Y., and Alaoui, F., J. Cryst. Growth 95, 150 (1989).Google Scholar
12. Kamp, M., Contini, R., Werner, K., Heinecke, H., Weyers, M., Luth, H., and Balk, P., J. Cryst. Growth 95, 154 (1989).Google Scholar
13. Abernathy, C.R., Pearton, S.J., Ren, F., Hobson, W.S., Fullowan, T.R., Katz, A., Jordan, A.S., and Kovalchick, J., Cryst, J.. Growth 105, 375 (1990).Google Scholar
14. Ito, H. and Ishibashi, T., Jpn. J. Appl. Phys. 30, L944 (1991).Google Scholar
15. Shirakashi, J., Yamada, T., Qi, M., Nozaki, S., Takahashi, K., Tokumitsu, E., and Konagai, M., Jpn. J. Appl. Phys. 30, L1609 (1991).Google Scholar
16. Speriosu, V.S. and Vreeland, T. Jr, J. Appl. Phys. 65, 1591 (1984).Google Scholar
17. Cerdeira, F., Pinczuk, A., Bean, J.C., Batlogg, B., and Wilson, B. A., Appl. Phys. Lett. 45, 1138 (1984).Google Scholar
18. Qi, M. and Luo, J. S., Research and Progress of Solid State Electronics (in Chinese) 12, 132 (1992).Google Scholar
19. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
20. Ji, G., Huang, D., Reddy, U.K., Henderson, T.S., Houdre, R., and Morkoc, H., J. Appl. Phys. 62, 3366 (1987).Google Scholar