Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T10:27:22.540Z Has data issue: false hasContentIssue false

He Implanted Channel Waveguides of New Design for Efficient Blue Laser Light Generation

Published online by Cambridge University Press:  03 September 2012

L. Beckers
Affiliation:
Institute for Ion Technology, Forschungszentrum Jülich GmbH (KFA), D-52425 Jilich, Germany
St. Bauer
Affiliation:
Institute for Ion Technology, Forschungszentrum Jülich GmbH (KFA), D-52425 Jilich, Germany
Ch. Buchal
Affiliation:
Institute for Ion Technology, Forschungszentrum Jülich GmbH (KFA), D-52425 Jilich, Germany
D. Fluck
Affiliation:
Institute for Quantum Electronics, ETH-Hönggerberg, CH-8093 Zflrich, Switzerland
T. Pliska
Affiliation:
Institute for Quantum Electronics, ETH-Hönggerberg, CH-8093 Zflrich, Switzerland
P. Günter
Affiliation:
Institute for Quantum Electronics, ETH-Hönggerberg, CH-8093 Zflrich, Switzerland
Get access

Abstract

We present a new mask design and implantation scheme, which uses one single ion implantation step of 2 MeV He ions at a dose of 7–1014 to 3–1015 He/cm2 to form channel waveguides in single crystalline KNbO3. The special processing of the photoresist mask enables the formation of channel waveguides with a trapezoidal-shaped cross section, providing for the first time simultaneous confinement of both TE and TM modes in a permanent KNbO3 channel waveguide. 2.6 mW second-harmonic blue light at 441 nm was generated in a 5.8 mm long guide for a fundamental power of approx. 200 mW.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Günter, P. and Huiguard, I. P., Photorefractive Materials (Springer, Berlin 1988).Google Scholar
2. Fluck, D., Günter, P., Irmscher, R. and Buchal, Ch., Appl. Phys. Lett. 59, p. 3213 (1991).Google Scholar
3. Fluck, D., Glinter, P., Fleuster, M. and Buchal, Ch., J. Appl. Phys. 72, p. 1671 (1992).Google Scholar
4. Fluck, D., Moll, J., Günter, P., Fleuster, M. and Buchal, Ch., J. Appl. Phys. 74, p. 6023 (1993).Google Scholar
5. Fluck, D., Pliska, T., Glinter, P., Fleuster, M., Buchal, Ch. and Rytz, D., Electron. Lett. 30, p. 1937 (1994).Google Scholar
6. Fluck, D., Pliska, T., Günter, P., Bauer, St., Beckers, L. and Buchal, Ch., Appl. Phys. Lett. Jan 1997 (accepted).Google Scholar
7. Fluck, D., Jundt, D. H., Gtinter, P., Fleuster, M. and Buchal, Ch., J. Appl. Phys. 74, p. 6023 (1993).Google Scholar
8. Solcia, C., Fluck, D., Pliska, T., Gilnter, P., Bauer, St., Beckers, L. and Buchal, Ch., Opt. Commun. 120, p. 39 (1995).Google Scholar
9. Buchal, Ch., Withrow, S. P., White, C. W. and Poker, D. B., Ion Implantation of Optical Materials, Annual Rev. Mat. Sci. 24, p. 125 (1994)Google Scholar