Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-06T17:47:31.742Z Has data issue: false hasContentIssue false

Hard Carbon Films with Various Microstructure Prepared by Ion Assisted Evaporation

Published online by Cambridge University Press:  22 February 2011

J. Ullmann
Affiliation:
Technische Universität Chemnitz-Zwickau, Fachbereich Physik, Reichenhainer Str. 70, D-09009 Chemnitz, Germany
A. Weber
Affiliation:
Technische Universität Chemnitz-Zwickau, Fachbereich Physik, Reichenhainer Str. 70, D-09009 Chemnitz, Germany
U. Falke
Affiliation:
Technische Universität Chemnitz-Zwickau, Fachbereich Physik, Reichenhainer Str. 70, D-09009 Chemnitz, Germany
Get access

Abstract

For a deeper understanding of the creation of carbon films the hydrogen-free ion assisted evaporation (IAE) method with neon species was used. Variation of the ion parameters energy and ion to neutral arrival ratio, delivering the necessary energy for modification of the film growth, results in different microstructures investigated with EELS, HRTEM and TED as well as different microhardnesses measured by dynamical Vickers indentation. A possible film growth mechanism is proposed based on an ion etching of mainly sp2-bonded carbon surface atoms and on defect dominated structure modification below the surface depending on the ion energy

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Proc. of 3rd European Conference on Diamond, Diamond-Like and Related Materials, ed. by P. K. Bachmann, R.T. Collins, M. Seal (Elsevier Sequoia S. A., Lausanne, 1993), Heidelberg, Germany, August 31 - September 4, 1992.Google Scholar
21 Ullmann, J., Schmidt, G., Scharff, W., Thin Solid Films 214, 35 (1992).Google Scholar
3 Namba, Y., Wei, J., Mohri, T., Heidarpour, E. A., J. Vac. Sci. Technol. A 7 (1), 36 (1989).Google Scholar
4 Lau, W. M., Bello, I., Feng, X., Huang, L. J., Fuguang, Q., Zhenyu, Y., Zhizhang, R., Lee, S. T., J. Appl. Phys. 70, 5623 (1991).Google Scholar
5 Pivin, J. C., Lee, T. J., Diamond and Relat. Mater. 1, 650 (1992).Google Scholar
6 Ullmann, J., Schmidt, G., Diamond and Relat. Mater. 1, 321 (1992).Google Scholar
7 Ullmann, J., Falke, U., Scharff, W., Schröer, A., Wolf, G. K., Thin Solid Films 232, 154 (1993).Google Scholar
8 Ullmann, J., Martin, H., Wolf, G. K., Surf, and Coat. Technol. 59, 255 (1993).Google Scholar
9 Daniels, J., Festenberg, C. v., Raether, H., Zeppenfeld, K., Springer Tracts in Modern Physics 54, 77(1970)Google Scholar
10 Green, D. C., McKenzie, D. R., Lukins, P. B., Materials Science Forum 52&53, 103 (1989)Google Scholar
11 Mühling, I., Thesis, Technical University Chemnitz, 1989 Google Scholar
12 Ullmann, J., Thesis, Technical University Chemnitz, 1991 Google Scholar
13 Eckstein, W., Computer Simulation of Ion-Solid Interactions, (Springer-Verlag, Berlin, Heidelberg, New York, 1991).Google Scholar
14 Ullmann, J., Weber, A., Mainz, B., Stiegler, J., Schuhrke, T., Diamond and Relat. Mater. xx, xx (1994) (accepted)Google Scholar