Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T11:26:17.114Z Has data issue: false hasContentIssue false

Hafnium-related Photoluminescence in Single Crystal Silicon

Published online by Cambridge University Press:  01 February 2011

R. Sachdeva
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 Lawrence Berkeley National Laboratory, MS 62-203, 1 Cyclotron Rd., Berkeley, CA 94720
A. A. Istratov
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 Lawrence Berkeley National Laboratory, MS 62-203, 1 Cyclotron Rd., Berkeley, CA 94720
Wei Shan
Affiliation:
Lawrence Berkeley National Laboratory, MS 62-203, 1 Cyclotron Rd., Berkeley, CA 94720
P. N. K. Deenapanray
Affiliation:
Center for Sustainable Energy Systems, The Australian National University, Canberra, Australia 0200
E.R. Weber
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 Lawrence Berkeley National Laboratory, MS 62-203, 1 Cyclotron Rd., Berkeley, CA 94720
Get access

Abstract

A new photoluminescence (PL) band in the energy range of 700 meV to 950 meV associated with hafnium implanted in silicon is reported. A shift in the position of photoluminescence peaks observed on the samples implanted with two different isotopes of Hf confirms the Hfrelated origin of the observed photoluminescence band. Activation of the Hf-optical centers requires a 1000°C anneal step. The intensity of the PL lines depends on the cooling conditions. The spectrum consists of five peaks in the rapidly quenched sample as opposed to twenty one in the slowly cooled sample. Temperature dependent PL measurements and hydrostatic pressure measurements were performed to identify their nature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, S. J., Luan, H. F., Lee, C. H., Jeon, T. S., Bai, W. P., Senzaki, Y., Roberts, D., and Kwong, D. L., inSymposium on VLSI Technology”, p. 133. Japan Soc. Appl. Phys. (2001).Google Scholar
2. Wilk, G. D. and Wallace, R. M., Appl. Phys. Lett. 74, 2854 (1999).Google Scholar
3. Lemke, H., Phys. Status Solidi A 122, 617 (1990).Google Scholar
4. Stolk, P. A., Gossmann, H. J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S., and Haynes, T. E., J Appl Phys 81, 6031 (1997).Google Scholar
5. Weber, W., Physical Review B 15, 4789 (1977).Google Scholar
6. Nilsson, G. and Nelin, G., Physical Review B 6, 3777 (1972).Google Scholar
7. Weber, J., Bauch, H., and Sauer, R., Physical Review B 25, 7688 (1982).Google Scholar
8. Henry, M. O., Campion, J. D., McGuigan, K. G., Lightowlers, E. C., Carmo, M. C. do, and Nazare, M. H., Semiconductor Science & Technology 9, 1375 (1994).Google Scholar
9. Bimberg, D., Sondergeld, M., and Grobe, E., Physical Review B 4, 3451 (1971).Google Scholar
10. Su-Huai, W. and Zunger, A., Physical Review B 60, 5404 (1999).Google Scholar