Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T20:53:56.668Z Has data issue: false hasContentIssue false

Guiding Principle to Develop Intrinsic Microcrystalline Silicon Absorber Layer For Solar Cell By Hot-Wire Cvd

Published online by Cambridge University Press:  17 March 2011

A. R. Middya
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130
U. Weber
Affiliation:
Department of Physics and Center of Materials Research, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautren, Germany
C. Mukherjee
Affiliation:
Department of Physics and Center of Materials Research, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautren, Germany
B. Schroeder
Affiliation:
Department of Physics and Center of Materials Research, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautren, Germany
Get access

Abstract

We report on ways to develop device quality microcrystalline silicon (μc-Si:H) intrinsic layer with high growth rate by hot-wire chemical vapor deposition (HWCVD). With combine approach of controlling impurities and moderate H-dilution [H2/SiH4 ͌ 2.5], we developed, for the first time, highly photosensitive (103 μc-Si:Hfilms with high growth rate (>1 nm/s); the microstructure of the film is found to be close to amorphous phase (fc ͌ 46 ̻± 5%). The photosensitivity systematically decreases with fc and saturates to 10 for fc> 70%. On application of these materials in non-optimized pin [.proportional]c-Si:H solar cell structure yields 700 mV open-circuit voltage however, surprisingly low fill factor and short circuit current. The importance of reduction of oxygen impurities [O], adequate passivation of grain boundary (GB) as well as presence of inactive GB of (220) orientation to achieve efficient [.proportional]c-Si:H solar cells are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Selvan, J.A. Anna, Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Ginnoules, P. and Koehler, J., Mat. Res. Soc. Symp. Proc. Vol. 420 (1996) 3.Google Scholar
2. Yamamoto, K., Yoshimi, M., Suzuki, T., Nakata, T., Sawada, T., Nakajima, A. and Hayashi, K., Conf. Record. 28th IEEE, PVSC, Anchorage, Alaska (2000) 1428.Google Scholar
3. Middya, A.R., Guillet, J., Brenot, R., Perrin, J., Bouree, J.E., Longeaud, C. and Kleider, J.P., Mat. Res. Soc.Symp. Proc. Vol. 467 (1997) 271.Google Scholar
4. Ledermann, A., Weber, U., Mukherjee, C. and Schroeder, B., Ist Cat-CVD Conference, Kanazawa, Japan, November, 2000 (in press).Google Scholar
5. Weber, U., Middya, A.R., Mukherjee, C. and Schroeder, B., Conf. Record. 28th IEEE,PVSC, Anchorage, Alaska (2000) 908.Google Scholar
6.U. Weber, M. Koob, R.O. Dusane, C. Mukherjee, H. Seitz, and B. Schroeder, Proc. of the 16th EC PVSEC (Glasgow, 2000) 286.Google Scholar
7. Nasuno, Y., Kondo, M. and Matsuda, A., Conf. Record. 28th IEEE, PVSC, Anchorage, Alaska (2000) 142.Google Scholar
8. Correia, A., Ballutaud, D., Maurice, J.-L., J. Electrochem. Soc. 142 (1995) 898.Google Scholar