Skip to main content Accessibility help

Guided-mode resonance and field enhancement in semiconductor nanorod arrays

  • W. X. Yu (a1) and Y. Yi (a1) (a2)


Guided mode resonance was numerically demonstrated in the tapered silicon nitride nanorod arrays on glass substrate. Finite difference time domain technique was employed to investigate the detailed light-matter interaction dynamics and the generation of resonance at femtoseconds. Enhanced electromagnetic (EM) field intensity with enhancement factor of 200∼250 could be achieved. This highly concentrated electromagnetic field could be extended to the nanorod array tips and substrate for higher order resonance modes, which allows future application of this transverse propagating field in optical signal amplification, like fluorescence or Raman enhancement.


Corresponding author



Hide All
1. Lin, Y.R., Wang, H.P., Lin, C.A., and He, J.-H., J. Appl. Phys. 106 (2009).
2. Lin, Y.-R., Lai, K. Y., Wang, H.P., and He, J.-H., Nanoscale 2, 2765 (2010).10.1039/c0nr00402b
3. Wang, Y., Lu, N., Xu, H., Shi, G., Xu, M., Lin, X., Li, H., Wang, W., Qi, D., Lu, Y., and Chi, L., Nano Research 3, 520 (2010).10.1007/s12274-010-0012-x
4. Hessel, A., and Oliner, A. A., Appl. Opt. 4, 1275 (1965).10.1364/AO.4.001275
5. Wang, S. S., Magnusson, R., Bagby, J. S., and Moharam, M. G., J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7, 1470 (1990).10.1364/JOSAA.7.001470
6. Wang, S. S., and Magnusson, R., Opt. Lett. 19, 919 (1994).10.1364/OL.19.000919
7. Liu, Z. S., Tibuleac, S., Shin, D., Young, P. P., and Magnusson, R., Opt. Lett. 23, 1556 (1998).10.1364/OL.23.001556
8. Magnusson, R., Shin, D., and Liu, Z. S., Opt. Lett. 23, 612 (1998).10.1364/OL.23.000612
9. Szeghalmi, A., Kley, E. B., and Knez, M., J. Phys. Chem. C 114, 21150 (2010).10.1021/jp107540y
10. Lin, S. F., Wang, C. M., Tsai, Y. L., Ding, T. J., Yang, T. H., Chen, W. Y., Yeh, S. F., and Chang, J. Y., Sens. Actuators, B 176, 1197 (2013).10.1016/j.snb.2012.02.014
11. Shi, L., Pottier, P., Peter, Y.A., and Skorobogatiy, M., Opt. Express 16, 17962 (2008).10.1364/OE.16.017962
12. Zhu, A. Y., Zhu, S., and Lo, G.Q., Opt. Express 22, 2247 (2014).10.1364/OE.22.002247
13. Lee, Y.C., Huang, C.F., Chang, J.Y., and Wu, M.-L., Opt. Express 16, 7969 (2008).10.1364/OE.16.007969
14. Lin, J. H., Tseng, C.Y., Lee, C.T., Kan, H.-C., and Hsu, C. C., Opt. Express 21, 24318 (2013).10.1364/OE.21.024318
15. Gao, W., Shu, J., Qiu, C., and Xu, Q., ACS Nano 6, 7806 (2012).10.1021/nn301888e
16. Giese, J. A., Yoon, J. W., Wenner, B. R., Allen, J. W., Allen, M. S., and Magnusson, R., Opt. Lett. 39, 486 (2014).10.1364/OL.39.000486
17. Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolskiy, V. A., and Zayats, A. V., Nat. Mater. 8, 867 (2009).10.1038/nmat2546
18. Khatua, S., Paulo, P. M. R., Yuan, H., Gupta, A., Zijlstra, P., and Orrit, M., ACS Nano (2014).
19. Jackson, J. B., and Halas, N. J., Proc. Natl. Acad. Sci. U. S. A. 101, 17930 (2004).10.1073/pnas.0408319102



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed