Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T03:05:57.567Z Has data issue: false hasContentIssue false

Growth Processes of Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  17 March 2011

John Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UK.jr@eng.cam.ac.uk
Get access

Abstract

The surface and subsurface processes occurring during the growth of a-Si:H are analysed to understand why dangling bond defects and weak Si-Si bonds form. We argue that hydrogen elimination to form the Si-Si network is the rate limiting process at low temperature, and this leads to the creation of weak Si-Si bonds. Dangling bonds form subsequently from weak bonds by a defect pool type process. Plasma processes, such as ion bombardment, which dehydrogenate the surface layers, can reduce the weak bond density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuda, A, Tanaka, K, J Non-Cryst Solids 97 1367 (1987)Google Scholar
2. Hishikawa, Y, Wakisaka, H, Kuwano, Y, J App Phys 73 4227 (1993)Google Scholar
3. Roca, P Cabarrocas, i, Bouizem, Y, Theye, M L, Phil Mag B 65 1025 (1992)Google Scholar
4. Matsuda, A, J Vac Sci Technol A 16 365 (1998)Google Scholar
5. Gallagher, A, J App Phys 63 2406 (1988)Google Scholar
6. Tanaka, K and Matsuda, A, Mat Sci Rep 2 139 (1987)Google Scholar
7. Perrin, J, J Non-Cryst Solids 137 639 (1991); J Perrin in ‘Plasma deposition’, ed G Bruno et al (Academic, New York, 1995) p177Google Scholar
8. Tsai, C C, Knight, J C, Chang, G and Wacker, B, J App Phys 59 2998 (1986)Google Scholar
9. Street, R A and Winer, K, Phys Rev B 40 6236 (1989)Google Scholar
10. Powell, M J and Deane, S C, Phys Rev B 48 10815 (1993); 53 10121 (1996)Google Scholar
11. Yamasaki, S, Phil Mag B 56 79 (1987)Google Scholar
12. Stutzmann, M, Phil Mag B 60 531 (1989)Google Scholar
13. Beyer, W, J Non-Cryst Solids 198 40 (1996); W Beyer, in ‘Semiconductors and Semimetals’ ed J Pankove, vol 61 (Academic Press, NY, 1999)Google Scholar
14. Kushner, M J, J App Phys 63 2532 (1988); M J McCaughey and M J Kushner, J App Phys 65 186 (1989)Google Scholar
15. Gleason, K, Wang, K S, Chen, M K and Reimer, J A, J App Phys 61 2866 (1987)Google Scholar
16. Ganguly, G, Matsuda, A, Phys Rev B 47 3661 (1993); J Non-Cryst Solids 164 31 (1993)Google Scholar
17. Winer, K, Phys Rev B 41 7952 (1990)Google Scholar
18. Street, R A, Phys Rev B 44 10610 (1991)Google Scholar
19. Sanden, M C M van de, Kessels, W M M, Smets, A H M, Korevaar, B A, Severens, R J, Schram, D C, Mat Res Soc Symp Proc 557 13 (1999)Google Scholar
20. Jackson, W B, J Non-Cryst Solids 164 263 (1993)Google Scholar
21. Robertson, J and Powell, M J, Thin Solid Films 337 32 (1999)Google Scholar
22. Robertson, J, J App Phys 87 2608 (2000)Google Scholar
23. Perrin, J, Shiratani, M, Kae-Nune, P, Videlot, H, Jolly, J and Guillon, J, J Vac Sci Technol A 16 278 (1998)Google Scholar
24. Matsuda, A, Nomoto, K, Takeuchi, Y, Suzuki, A, Yuuki, A and Perrin, J, Surf Sci 227 50 (1990)Google Scholar
25.However, calculations find that the SiH3 does not bind to Si-H surface bonds (G N Parsons, private communication), which is a serious unresolved problem for this model..Google Scholar
26. Koleske, D D, Gates, S M and Jackson, B, J Chem Phys 101 3301 (1994)Google Scholar
27. Srinivasan, E, Yang, H and Parsons, G N, J Chem Phys 105 5467 (1996)Google Scholar
28. Parsons, G N, private communicationGoogle Scholar
29. Greenlief, C M, Gates, S M and Holbert, P A, J Vac Sci Technol A 7 1845 (1989)Google Scholar
30. Collins, R W, Yang, B Y, J Vac Sci Technol B 7 1155 (1989)Google Scholar
31. Yamasaki, S, Umeda, T, Isoya, J, Tanaka, K, App Phys Lett 70 1137 (1997); this volumeGoogle Scholar
32. Porter, D A, Easterling, K E, ‘Phase Transformations in Metals and Alloys’ (Chapman & Hall, London 1992)p17, p308 Google Scholar
33. Acco, S, Williamson, D L, Stolk, P A, Boogaard, M J van der, Sinke, W C, Weg, W F van, Roorda, S and Zalm, P C, Phys Rev B 53 4415 (1996)Google Scholar
34. Acco, S, Beyer, W, vanFaassen, E E and Weg, W F van der, J App Phys 82 2862 (1997)Google Scholar
35. Knights, J C, J Non-Cryst Solids 32 393 (1977)Google Scholar
36. Walle, C G Van de, Phys Rev B 49 4579 (1994)Google Scholar
37. Kampas, F J and Griffith, R W, App Phys Lett 39 407 (1981)Google Scholar
38. Scott, B A, Reimer, J A and Longeway, P A, J App Phys 54 6853 (1983)Google Scholar
39. Kessels, W M M, Severens, R J, Sanden, M C M van der and Schram, D C, J Non-Cryst Solids 227 133 (1998)Google Scholar
40. Chang, K J and Chadi, J D, Phys Rev Lett 62 937 (1989); Phys Rev B 40 11644 (1990)Google Scholar
41. Robertson, J, Chen, C W, Powell, M J, Deane, S C, J Non-Cryst Solids 227 138 (1998)Google Scholar
42. Miyoshi, Y, Yoshida, Y, Miyazaki, S and Hirose, M, J Non-Cryst Solids 198 1029 (1996)Google Scholar
43. Moller, W, App Phys A 56 527 (1993)Google Scholar
44. Perrin, J, Roca, P Cabarrocas, I, Allain, B, Friedt, J M, Jpn J App Phys 27 2041 (1988)Google Scholar
45. Roca, P Cabarrocas, I, App Phys Lett 65 1674 (1995)Google Scholar
46. Williamson, D L, Mat Res Soc Symp Proc 557 251 (1999)Google Scholar
47. French, I D, Deane, S C, Murley, D T, Hewett, J, Gale, I G and Powell, M J, Mat Res Soc Symp Proc 467 875 (1997)Google Scholar
48. Wehrspohn, R B, Deane, S C, French, I D, Gale, I G, Hewett, J, Powell, M J, Robertson, J, J Appl Phys 87 144 (2000)Google Scholar