Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T05:48:09.867Z Has data issue: false hasContentIssue false

Growth of Superconducting La2−xSrxCuO4 Single Crystals

Published online by Cambridge University Press:  21 February 2011

Hironao Kojima
Affiliation:
Institute of Inorganic Synthesis, Faculty of Engineering, Yamanashi University, Miyamae 7, Kofu 400, Japan
Isao Tanaka
Affiliation:
Institute of Inorganic Synthesis, Faculty of Engineering, Yamanashi University, Miyamae 7, Kofu 400, Japan
Get access

Abstract

High quality large single crystals of La2−xSrxCuO4 were grown by the traveling solvent floating zone method(TSFZ method). The crystals up to about 6 mm diameter and 40 mm length were obtained. The composition of the grown crystals was uniform and was determined to be La1.86Sr0.14Cu0.97O3.89. The single crystals were superconductors with Tc=37.5K and δ Tc=1.1K, and had a significant anisotropy of the electrical resistivities at the non-superconducting state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, I. J.G. and Muller, K.A., Z. Phys. B64, 189 (1986).Google Scholar
2. Uchida, S., Takagi, H., Kitazawa, K. and Tanaka, S., Japan. J. Appl. Phys. 26, L1 (1987).Google Scholar
3. Takagi, H., Uchida, S., Kitazawa, K. and Tanaka, S., Japan. J. Appl. Phys. 26, L231, (1987).Google Scholar
4. Chu, C. W., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J. and Wang, Y.Q., Phys. Rev. Lett. 58, 408 (1987).Google Scholar
5. Cava, R.J., Dover, R.B. van, Batlogg, B. and Rietman, E.A., Phys. Rev. Lett. 58, 408 (1987).Google Scholar
6. Vaknin, D., Sinha, S.K., Moncton, D.E., Johnston, D.C., Newsam, J., Safinya, C.R. and King, H., Phys. Rev. Latt. 58, 2802 (1987).Google Scholar
7. Freltoft, T., Fisher, J.E., Shirane, G., Moncton, D.E., Shinha, S.K., Vaknin, D., Remeika, J.P., Cooper, A.S. and Harshman, D., Phys. Rev. B 36, 826 (1987).Google Scholar
8. Gadalla, A.M.M., Ford, W.F. and White, J., Trans. Brit. Ceram. Soc. 62, 45 (1963).Google Scholar
9. Wang, H.H., Geiser, U., Thorn, R.J., Carlson, K.D., Beno, M.A., Monaghan, M.R., Allen, T.J., Proksch, R.B., Stupka, D.L., Kwok, W.K., Crabtree, G.W. and Williams, J.M., Inorg. Chem. 26, 1190 (1987).Google Scholar
10. Hidaka, Y., Enomoto, Y., Suzuki, M., Oda, M. and Murakami, T., Japan. J. Appi. Phys. 26, L377 (1987); J. Crystal Growth 85, 581 (1987).Google Scholar
11. Hasegawa, H., Kawabe, U., Aita, T. and Ishiba, T., Japan. J. Appl. Phys. 26, L673 (1987).Google Scholar
12. Shamoto, S., Hosoya, S. and Sato, N., Solid State Commun. 66, 195 (1988).Google Scholar
13. Chen, C., Watts, B.E., Wanklyn, B.M. and Thomas, P., Solid State Commun. 66, 611 (1988).Google Scholar
14. Oka, K. and Unoki, H., Japan. J. Appl. Phys. 26; L1590 (1987).Google Scholar
15. Picone, P.L., Jenssen, H.P. and Gabbe, D.R., J. Crystal Growth 85, 576 (1987); 91, 463 (1988).Google Scholar
16. Bykov, A.B., Demianets, L.N., Zibrov, I.P., Kanunnikov, G.V., Melnikov, O.K. and Stishov, S.M., J. Crystal Growth 91, 302 (1988).Google Scholar
17. Trouilleux, L., Dhalenne, G. and Revcolevschi, A., J. Crystal Growth 91, 268 (1988).Google Scholar
18. Kimura, S. and Shindo, I., J. Crystal Growth 41, 192 (1977); K. Kitamura, Y. Mori and H. Takamizawa, J. Crystal Growth, 44, 621 (1978).Google Scholar
19. 1. Shindo, Ii, N., Kitamura, K. and Kimura, S., J. Crystal Growth 46, 307 (1979).Google Scholar