Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T18:20:25.954Z Has data issue: false hasContentIssue false

Growth of Single-Walled Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Matthew R. Maschmann
Affiliation:
Purdue University, School of Mechanical Engineering and Birck Nanotechnology Center, West Lafayette, Indiana 47904
Amit Goyal
Affiliation:
New Jersey Institute of Technology, Department of Chemistry, Newark, New Jersey 07102
Zafar Iqbal
Affiliation:
New Jersey Institute of Technology, Department of Chemistry, Newark, New Jersey 07102
Timothy S. Fisher
Affiliation:
Purdue University, School of Mechanical Engineering and Birck Nanotechnology Center, West Lafayette, Indiana 47904
Roy Gat
Affiliation:
Sekitechnotron USA, 1153 Bordeaux Dr #102, Sunnyvale, California 94089
Get access

Abstract

Single-walled carbon nanotubes (SWCNTs) have been grown for the first time by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800°C using methane as the precursor and bimetallic Mo/Co catalyst supported on MgO dispersed on a silicon wafer. The nanotubes grown consist of bundles, each composed of individual tubes of a single diameter associated with either metallic or semiconducting SWCNTs, based on characterization by Raman spectroscopy. Field-emission scanning electron microscopy and atomic force microscopy show that the bundles are relatively thin – 5 to 10 nm in diameter – and up to a few micrometers in length. The results are compared with those obtained on recently reported SWCNTs grown by radio frequency PECVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Hofmann, S.; Ducati, C.; Robertson, J.; and Kleinsorge, B. Appl. Phys. Lett 2003, 83, 135.Google Scholar
(2) Boskovic, B. O.; Stolojan, V.; Khan, R. U. A.; Haq, S.; Silva, S. R. P. Nature Materials 2002, 1, 166.Google Scholar
(3) Bower, C.; Zhu, W.; Jin, S.; Zhou, O. Appl. Phys. Lett. 2000, 77, 830.Google Scholar
(4) Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Plasma Sources Sci. Technol 2003, 12, 205.Google Scholar
(5) Tu, Y.; Huang, Z. P.; Wang, D. Z.; Wen, J. G.; and Ren, Z. F. Appl Phys. Lett. 2002, 80, 4018.Google Scholar
(6) Kato, T.; Jeong, G.-H.; Hirata, T.; Hatakeyama, R.; Tohji, K.; and Motomiya, K. Chem. Phys. Lett. 2003, 381, 422.Google Scholar
(7) Li, Y.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D.; Yenilmez, E.; Wang, Q.; Gibbons, J. F.; Nishi, Y.; Dai, H. Nano Lett. 2004, 4, 317.Google Scholar
(8) Kanzow, H; Ding, A. Phys. Rev. B 1999, 60, 11180.Google Scholar
(9) Delzeit, L.; McAninch, I.; Cruden, B. A.; Hash, D.; Chen, B.; Han, J.; Meyyappan, M. J. Appl. Phys. 2002, 91, 6027.Google Scholar
(10) Goyal, A.; Wang, Y.; Sharma, R.; Iqbal, Z. manuscript in preparation.Google Scholar
(11) Bachilo, S.M.; Strano, M.S.; Kittrell, C.; Hauge, R.H.; Smalley, R.E.; Weisman, R.B., Science 2002, 298, 2361.Google Scholar
(12) Kataura, H.; Kumazawa, Y.; Maniwa, I.; Umezu, S.; Suzuki, S.; Ohtsuka, Y.; Achiba Y. Synth. Met. 1999, 103, 2555.Google Scholar
(13) Liu, J.; Fan, S.; and Dai, H. MRS Bulletin 2004, 29, 244.Google Scholar