Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T04:42:21.847Z Has data issue: false hasContentIssue false

Growth of Single Crystal Copper Films on Diamond Using Fcc-Iron Seed Layers

Published online by Cambridge University Press:  21 February 2011

D. P. Pappas
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284–2000
V. G. Harris
Affiliation:
Naval Research Laboratory, Washington, DC 20375
H. A. Hoff
Affiliation:
Naval Research Laboratory, Washington, DC 20375
G. L. Watena
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. W. Glesener
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Copper films were grown on a single crystal diamond substrate using an iron seed layer. The effect of the crystalline structure of the iron seed on the Cu films was studied with extended x-ray absorption fine structure (EXAFS) and scanning electron microscopy (SEM). The EXAFS study shows that the 10 Å Fe seed layer is in an fee structure, and has collapsed into a bec structure by the time 20 Å of Fe has been deposited. In the SEM pictures it is observed that subsequent layers of Cu grow as continuous films for thin fcc-Fe seeds, and grow in an island mode for the thick, bcc-Fe seeds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Falicov, L.M., Pierce, D.T., Bader, S.D., Grónsky, R., Hathaway, K.B., Hopster, H., Lambeth, D.N., Parkin, S.S.P., Prinz, G., Salamon, M., Schuller, I.K., and Victora, R.H., J. Mater. Res. 5, 1299 (1990).Google Scholar
2. Geis, M.W., Angus, J.C., Scientific American 267, 84 (1992).Google Scholar
3. Humphreys, T.P., et. al, Mat. Res. Soc. Symp. Proc. 202, 463, 1991.Google Scholar
4. Pappas, D.P., Glesener, J.W., Harris, V.G., Krebs, J.J., Idzerda, Y.U., Morrish, A.A., and Prinz, G. A., Mat. Res. Soc. Symp. Proc. 313, 369 (1993).Google Scholar
5. Pappas, D.P., Glesener, J.W., Harris, V.G., Idzerda, Y.U., Krebs, J.J., and Prinz, G.A., Appl. Phys. Lett., 64, 28 (1994).Google Scholar
6. Chambliss, D.D., Johnson, K.E., Kalki, K., Chiang, S., and Wilson, R.J., Mat. Res. Soc. Symp. Proc. 313, 713 (1992).Google Scholar
7. Wan-rong, C. and Ziqin, W.U., Chinese Physics 3, 299 (1983).Google Scholar
8. Chambers, S.A., Wagener, T.J., and Weaver, J.H., Phys. Rev. B 36, 8992 (1987).Google Scholar
9. Liu, C., Moog, E.R., and Bader, S.D., Phys. Rev. Lett. 60, 2422 (1988).Google Scholar
10. Wang, C.S., Klein, B.M., Krakauer, H., Phys. Rev. Lett. 54, 1852 (1985).Google Scholar
11. in X-Ray Absorption Principles, Applications, Techniques of EX A FS, SEXAFS, and X A NES, ed. by Koningsberger, C.C. and Prins, R. (Wiley, New York 1988).Google Scholar
12. Rehr, J.J. and Albers, R.C., Phys. Rev. B 41, 8139 (1990).Google Scholar