Skip to main content Accessibility help

Growth of silicon nanowires-based heterostructures and their plasmonic modeling

  • Yuan Li (a1), Wenwu Shi (a1), John C. Dykes (a2) and Nitin Chopra (a1) (a3)


Complex nanoscale architectures based on gold nanoparticles (AuNPs) can result in spatially-resolved plasmonics. Herein, we demonstrate the growth of silicon nanowires (SiNWs), heterostructures of SiNWs decorated with AuNPs, and SiNWs decorated with graphene shells encapsulated gold nanoparticles (GNPs). The fabrication approach combined CVD growth of nanowires and graphene with direct nucleation of AuNPs. The plasmonic or optical properties of SiNWs and their complex heterostructures were simulated using discrete dipole approximation method. Extinction efficiency spectra peak for SiNW significantly red-shifted (from 512 nm to 597 nm or 674 nm) after decoration with AuNPs, irrespective of the incident wave vector. Finally, SiNW decorated with GNPs resulted in incident wave vector-dependent extinction efficiency peak. For this case, wave vector aligned with the nanowire axial direction showed a broad peak at ∼535 nm. However, significant scattering and no peak was observed when aligned in radial direction of the SiNWs. Such spatially-resolved and tunable plasmonic or optical properties of nanoscale heterostructures hold strong potential for optical sensor and devices.


Corresponding author

*Corresponding Author E mail:, Tel: 205-348-4153, Fax: 205-348-2164


Hide All
1. Fleischmann, M., Hendra, P. J., and McQuillan, A. J., Chem. Phys. Lett. 26, 163 (1974).
2. Campion, A., and Kambhampati, P., Chem. Soc. Rev. 27, 241 (1998).
3. Tian, Z. Q., Ren, B., and Wu, D. Y., J. Phys. Chem. B 106, 9463 (2002).
4. Saikin, S. K., Chu, Y., Rappoport, D., Crozier, K. B., Aspuru-Guzik, A., J. Phys. Chem. Lett. 1, 2740 (2010).
5. Timur, S., Vaskevich, A., Rubinstein, I., and Haran, G., J. Am. Chem. Soc. 131, 14390 (2009).
6. Suzuki, M., Niidome, Y., Kuwahara, Y., Terasaki, N., Inoue, K., Yamada, S., J. Phys. Chem. B 108, 11660 (2004).
7. Halas, N. J., Lal, S., Link, S., Chang, W. S., Natelson, D., Hafner, J. H., and Nordlander, P., Adv. Mater. 24, 4774 (2012).
8. Cheng, F., Agarwal, A., Buddharaju, K. D., Khalid, N. M., Salim, S. M., Widjaja, E., Garland, M. V., Balasubramanian, N., and Kwong, D. L., Biosensors Bioelectron. 24, 216 (2008).
9. Jin, M., Pully, V., Otto, C., van den Berg, A., and Carlen, E. T., J. Phys. Chem. C 114, 21953 (2010).
10. Hatab, N. A. A., Oran, J. M., and Sepaniak, M. J., ACS Nano 2, 377 (2008).
11. Karamehmedović, M., Schuh, R., Schmidt, V., Wriedt, T., Matyssek, C., Hergert, W., Stalmashonak, A., Seifert, G., and Stranik, O.. Opt. Express 19, 8939 (2011).
12. Flatau, P. J., and Draine, B. T., Opt. Express, 20, 1247 (2012).
13. Draine, B. T., and Flatau, P. J., J. Opt. Soc. Am. A 11, 1491 (1994).
14. Chopra, N., Bachas, L. G., and Knecht, M. R.. Chem. Mater. 21, 1176 (2009).
15. Wu, J., Shi, W., Chopra, N., J. Phys. Chem. C 116, 12861 (2012).
16. Atanasov, P. A., Nedyalkov, N. N., Sakai, T., Obara, M.. Appl. Surf. Sci. 254, 794 (2005).


Related content

Powered by UNSILO

Growth of silicon nanowires-based heterostructures and their plasmonic modeling

  • Yuan Li (a1), Wenwu Shi (a1), John C. Dykes (a2) and Nitin Chopra (a1) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.