Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:41:41.751Z Has data issue: false hasContentIssue false

Growth of PbSSe On Heteroepitaxial BaF2/Si Substrates

Published online by Cambridge University Press:  25 February 2011

T. K. Chu
Affiliation:
Naval Surface Warfare Center, Silver Spring, Maryland, USA
C. Huber
Affiliation:
Naval Surface Warfare Center, Silver Spring, Maryland, USA
F. Santiago
Affiliation:
Naval Surface Warfare Center, Silver Spring, Maryland, USA
A. Martinez
Affiliation:
Naval Surface Warfare Center, Silver Spring, Maryland, USA
H. Zogg
Affiliation:
Swiss Federal Institute of Technology, Zurich, Switzerland
S. Blunier
Affiliation:
Swiss Federal Institute of Technology, Zurich, Switzerland
C. Maissen
Affiliation:
Swiss Federal Institute of Technology, Zurich, Switzerland
A. P. Taylor
Affiliation:
Rensselaer Polytechnic Institute, Troy, New York, USA
L. J. Schowalter
Affiliation:
Rensselaer Polytechnic Institute, Troy, New York, USA
Get access

Abstract

Heteroepitaxial films of (111)BaF2/CaF2 on (111)silicon, and (111)BaF2 on (100)silicon are used as substrates for the growth of IV-VI semiconductors. X-ray diffraction measurements show that p-type PbSxSe1-x(0.4 < × < 0.5) films grown on BaF2/CaF2/Si(111) substrates have bi-crystalline (111) and (100) characteristics. This, combined with thermal stress may cause the heteroepitaxy to peel off from the silicon. Films grown on BaF2(111)/Si(100) substrates display only the (111) peaks, and are robust with respect to thermal strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Farrow, R. F. C., Sullivan, P. W., Williams, G. M., Jones, G. R., and Cameron, P. G., J. Vac. Sci. Technol 19 415 (1981).Google Scholar
2. Schowalter, L. J. and Fathauer, R. N., C.R.C. Crit. Rev. Solid State Mat. Sci. 15 367 (1989).Google Scholar
3. Sinharoy, S., Thin Solid Films 187 231 (1990).CrossRefGoogle Scholar
4. Masek, J., Ishida, A., Zogg, H., Maissen, C., and Blunier, S., IEEE Electron Dev. Lett. 11 12 (1990) and references thereof. See also paper B13.7 of this conference, MRS Proceedings, vol. 220.CrossRefGoogle Scholar
5. Zogg, H., Appl. Phys. Lett. 49 933 (1986).Google Scholar
6. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc., 133, 666 (1988).CrossRefGoogle Scholar
7. Asano, T., Ishiwara, H., Kaifu, N., Jpn. J. Appl. Phys. 22, 1474 (1983).Google Scholar
8. Taylor, A. P., Li, W., Xiao, Q.-F., and Schowalter, L. J., paper B13.8 of this conference, MRS Proceedings, vol.220.Google Scholar
9. Zogg, H., Vogt, W., and Melchior, H., Mat. Res. Soc. Sym. Proc. 71 87 (1986).CrossRefGoogle Scholar
10. McCann, P. J., Paper C6.4 of this Conference, MRS Proceedings, vol. 221.Google Scholar