Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-17T14:21:17.613Z Has data issue: false hasContentIssue false

Growth of “New Form” of Polycrystalline Silicon Thin Films Synthesized by Hot Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

A. R. Middya
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130
J-J. Liang
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130
K. Ghosh
Affiliation:
Physics, Astronomy and Materials Science Department, Southwest Missouri State University, Springfield, MO 65804
Get access

Abstract

In this work, we report on next-generation hot wire chemical vapor deposition technique, we call it ceramics hot-wire CVD. Using a new concept of rectangular ceramics filament holder and “confinement of thermal radiation from the filament”, a “new form” of polycrystalline silicon thin films has been developed at low temperature (˜ 250°C). The grains are found to be symmetrically distributed in array along the parallel lines, in (111) direction. On the surface of individual grains, “five-fold” and “six-fold” symmetries have been observed and we suspect that we developed “buckyball” type “giant silicon molecular solids” with different crystalline silicon lattice other than standard single-crystal silicon structure. We observed rarely found “icosaderal” symmetry in silicon thin films. This hypothesis has been supported by multiple Raman active transverse optical modes and the crystallographic structure analyzed by X-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Middya, A. R., Guillet, J., Brenot, R., Perrin, J., Bouree, J. E., Longeaud, C. and Kleider, J. P., Mat. Res. Soc. Symp. Proc. Vol. 467 (1997) p. 271.10.1557/PROC-467-271Google Scholar
2 Rath, J. K., Tichelaar, F. D., Meiling, H. and Schropp, R. E. I., Mat. Res. Soc. Symp. Proc. Vol. 507 (1998) p. 879.10.1557/PROC-507-879Google Scholar
3 Kroto, H.W., Heath, J. R., 'Brien, S. C. O, Curl, R. F., Smalley, R. E., Nature (London) 318, 162 (1985).10.1038/318162a0Google Scholar
4 Penrose, R., Bull. Inst. Math. Appl. 10, 226 (1974).Google Scholar
5 Concari, S. B. and Buitrago, R. H., Semiconductor Science and Technology 18, 864 (2003).10.1088/0268-1242/18/9/309Google Scholar
6 Zhao, Y., Kim, Y H., Du, M H. and Zhang, S.B., Phys. Rev. Letts. 93, 015502–1 (2004).10.1103/PhysRevLett.93.015502Google Scholar
7 Zandi, R., Reguera, D., Bruinams, R. F., Gelbert, W. M. and Rudnick, J., Proc. National Academy of Science, USA 101 (44), 15556 (2004).10.1073/pnas.0405844101Google Scholar
8 Tsai, A. P., Inoue, A. and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).10.1143/JJAP.26.L1505Google Scholar