Skip to main content Accessibility help
×
Home

Growth of Metamorphic InGaP for Wide-Bandgap Photovoltaic Junction by MBE

  • John Simon (a1), Stephanie Tomasulo (a2), Paul Simmonds (a3), Manuel J Romero (a4) and Minjoo Larry Lee (a5)...

Abstract

Metamorphic triple-junction solar cells can currently attain efficiencies as high as 41.1%. Using additional junctions could lead to efficiencies above 50%, but require the development of a wide bandgap (2.0-2.2eV) material to act as the top layer. In this work we demonstrate wide bandgap InyGa1-yP grown on GaAsxP1-x via solid source molecular beam epitaxy. Unoptimized tensile GaAsxP1-x buffers grown on GaAs exhibit asymmetric strain relaxation, along with formation of faceted trenches 100-300 nm deep in the [01-1] direction. Smaller grading step size and higher substrate temperatures minimizes the facet trench density and results in symmetric strain relaxation. In comparison, compressively-strained graded GaAsxP1-x buffers on GaP show nearly-complete strain relaxation of the top layers and no evidence of trenches. We subsequently grew InyGa1-yP layers on the GaAsxP1-x buffers. Photoluminescence and transmission electron microscopy measurements show no indication of phase separation or CuPt ordering. Taken in combination with the low threading dislocation densities obtained, MBE-grown InyGa1-yP layers are promising candidates for future use as the top junction of a multi-junction solar cell.

Copyright

References

Hide All
[1] Guter, W., Schone, J., Philipps, S.P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E.,Bett, A.W., Dimroth, F., Appl. Phys. Lett. 94 (2009) 223504–3.
[2] Aiken, D., Comfeld, A., Stan, M., Sharps, P., IEEE 4th World Conference on Photovoltaic Energy Conversion 1 (2006) 838841.
[3] Tobïas, I., Luque, A., Progress in Photovoltaics: Research and Applications 10 (2002) 323329.
[4] Law, D.C., King, R., Yoon, H., Archer, M., Boca, A., Fetzer, C., Mesropian, S., Isshiki, T., Haddad, M., Edmondson, K., Bhusari, D., Yen, J., Sherif, R., Atwater, H., Karam, N., Solar Energy Materials and Solar Cells In Press, Corrected Proof (n.d.).
[5] Amano, C., Ando, K., Yamaguchi, M., J. Appl. Phys. 63 (1988) 28532856.
[6] Kim, A.Y., McCullough, W.S., Fitzgerald, E.A., J. Vac. Sci. Technol. B 17 (1999) 14851501.
[7] Zunger, A., Mahajan, S., Materials, Properties and Preparation (Handbook on Semiconductors) Ch. 19, illustrated edition, North Holland, 1994.
[8] Mori, M.J., Boles, S.T., Fitzgerald, E.A., J. Vac. Sci. Technol. A 28 (2010) 182188.
[9] Mori, M.J., Fitzgerald, E.A., J. Appl. Phys. 105 (2009) 013107–10.
[10] Steiner, M.A., Bhusal, L., Geisz, J.F., Norman, A.G., Romero, M.J., Olavarria, W.J., Zhang, Y., Mascarenhas, A., J. Appl. Phys. 106 (2009) 063525–5.
[11] Sang, J., Steeds, J.W., Hopkinson, M., Semicond. Sci. Technol. 8 (1993) 502508.
[12] Ptak, A.J., Friedman, D.J., Kurtz, S., J. Vac. Sci. Technol. B 25 (2007) 955959.
[13] Cheah, W.K., Fan, W.J., Wicaksono, S., Yoon, S.F., Tan, K.H., Journal of Crystal Growth 254 (2003) 305309.
[14] Yakimova, R., Omling, P., Yang, B.H., Samuelson, L., Fornell, J., Ledebo, L., Appl. Phys. Lett. 59 (1991) 1323.
[15] Cheah, W., Fan, W., Yoon, S., Tan, K., Liu, R., Wee, A., Thin Solid Films 488 (2005) 5661.
[16] Olson, J., McMahon, W.E., Kurtz, S., IEEE 4th World Conference on Photovoltaic Energy Conversion 1 (2006) 787790.
[17] Fetzer, C.M., Lee, R.T., Stringfellow, G.B., Liu, X.Q., Sasaki, A., Ohno, N., J. Appl. Phys. 91 (2002) 199.

Keywords

Growth of Metamorphic InGaP for Wide-Bandgap Photovoltaic Junction by MBE

  • John Simon (a1), Stephanie Tomasulo (a2), Paul Simmonds (a3), Manuel J Romero (a4) and Minjoo Larry Lee (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed