Skip to main content Accessibility help

The Growth of Homo-Epitaxial Silicon at Low Temperatures Using Hot Wire Chemical Vapor Deposition

  • J. Thiesen (a1), K.M. Jones (a2), R. Matson (a2), R. Reedy (a2), E. Iwaniczko (a2), H. Mahan (a2) and R. Crandall (a2)...


We report on the first known growth of high-quality epitaxial Si via the hot wire chemical vapor deposition (HWCVD) method. This method yields epitaxial Si at the comparatively low temperatures of 195° to 450°C, and relatively high growth rates of 3 to 20 Å/sec. Layers up to 4500-Å thick have been grown. These epitaxial layers have been characterized by transmission electron microscopy (TEM), indicating large regions of nearly perfect atomic registration. Electron channeling patterns (ECPs) generated on a scanning electron microscope (SEM) have been used to characterize, as well as optimize the growth process. Electron beam induced current (EBIC) characterization has also been performed, indicating defect densities as low as 8×104/cm2. Secondary ion beam mass spectrometry (SIMS) data shows that these layers have reasonable impurity levels within the constraints of our current deposition system. Both n and p-type layers were grown, and p/n diodes have been fabricated.



Hide All
1. Mohajerzadeh, S., Selvakumar, C. R., Brodie, D. E., Robertson, M. D. & Corbett, J. M., Mat. Res. Soc. Symp. Proc. 388, 201206 (1995).
2. Anthony, B., Breaux, L., Hsu, T., Bannerjee, S. & Tasch, A., J Vac. Sci. Technol. B. 7, (4):621(1989).
3. Molder, S. M., Liu, W. K., Ohtani, N. & Joyce, B. A. Appl. Phys. Lett 60, (18):22552257 (1992).
4. Chelly, R., Werckmann, J., Angot, T., Louis, P., Bolmont, D. & Koulmann, J. J. Thin Solid Films 294, 8487 (1997).
5. Ramana Murty, M. V. & Atwater, H. A. Phys. Rev. B 49, (12):84838486 (1994).
6. Sedgwick, T. O., Agnello, P. D., Berkenblit, M. & Kuan, T. S. Low-Temperature Selective Epitaxial Growth of Silicon at Atmospheric Pressure in an Ultra-clean System. Preprint
7. Kobayashi, K., Fukumoto, K., Katayama, T., Higaki, T. & Abe, H., 1992 Intl. Conf. on Solid State Devices and Materials 17–19 (1992).
8. Meyerson, B. inventor. Method and Apparatus for Low Temperature, Low Pressure Chemical Vapor Deposition of Epitaxial Silicon Layers. US. Pat. No., 5,298,452. (1994).1
9. Thompson, P. E., Twigg, M. E., Godbey, D. J. & Hobart, K. D., J Vac. Sci. Technol. B 11, (3):10771082 (1999).
10. Ramm, J., Beck, E., Dommann, A., Eisele, I. & Kruger, D., Thin Solid Films 246, 158163 (1994).
11. Violette, K. E., O'Neil, P. A., Ozturk, M. C., Christensen, K. & Maher, D. M., ElectroChem. Soc. Proc. 96-5, 375379 (1999).
12. Varhue, W. J., Andry, P. S., Rogers, J. L., Adams, E., Kontra, R. & Lavoie, M., Solid State Technology 163170 (1996).
13. Oshima, T., Sano, M., Yamada, A., Konagai, M. & Takahashi, K., Appl. Surface Sci. 79/80, 215219 (1994).
14. Ohmi, T., Hashimoto, K., Morita, M. & Shibata, T.,. J. Appl. Phys 69, (4):20622071 (1991).
15. Kasai, N. & Endo, N., J Electrochem. Soc. 139, (7):19831987 (1987).
16. Lips, K. Low Temperature Homoepitaxial Si Growth using ECR Remote Plasma. Hans Meitner Institut: (1999). Presentation of Work,
17. Eaglesham, D. J., Gossman, H. J. & Cerullo, M., Phyiscal Review Letters 65, (10):12271230 (1990).
18. Molenbroek, E. & Mahan, A., J. Applied Physics 82, (4): 19091917 (1998).
19. Molenbroek, E. C. Deposition of Hydrogenated Amorphous Silicon with the Hot Wire Technique. (1995). University of Colorado. 1 p.
20. Doyle, J., Robertson, G. H., Lin, M. Z. & Gallagher, A. J Appl. Phys 64, (6):32153222 (1988).
21. Sutoh, A., Okada, Y., Ohta, S. & Kawabe, M., Jap. J. Applied Physics 34, (Part2, 10b):L1379–L1382 (1995).
22. Brogueira, P., Conde, J. P., Arekat, S. & Chu, V., J. Appl. Phys. 78, (6):37763783 (1995).
23. Heintze, M., Zedlitz, R., Wanka, H. N. & Schubert, M. B., J Applied Physics 79, (5):26992706 (1996).
24. Gupta, P., Colvin, V. L. & George, S. M., Physical Review B 37, (14):82348243 (1988).
25. Northrup, J., Phys. Rev. B Rapid Communications 44, (3):14191422 (1991).
26. Ishiazaka, A. & Shiraki, Y., J. Electrochem. Soc. 133, (4):666671 (1986).
27. Matson, R., Thiesen, J., Crandall, R. S. et al. , The Use of Electron Channeling Patterns for Process Optimization of Low Temperature Epitaxial Silicon Using How Wire Chemical Vapor Deposition. Materials Research Society. Spring Symp. Session V.(1999).
28. Taylor, M. E. & Atwater, H. A.. Surface Science 127–129, 159163 (1998).
29. Murty, M. V. R. & Atwater, H. A., Surface Science 374, 283290 (1997).
30. Boland, I. J. & Parsons, G. N., Science 256, 13041306 (1992).
31. Pearton, S. J., International Journal of Modern Physics 8, (9): 10931158 (1994).
32. Johnson, N. M., Doland, C., Ponce, F., Walker, J. & Anderson, G., Physica b 170, 320 (1991).
33. Boland, J., Surface Science 261, 1728 (1992).
34. Niwano, M., Terashi, M. & Kuge, J., Surface Science 420, 616 (1999).
35. CS Office Pro. CambridgeSoft Corp. (3.0): Cambridge, Ma. CambridgeSoft Corp. (1999).
36. Heyman, J., Ager, J. W.E., Haller, E., Johnson, N. M., Walker, J. & Doland, C. M., Phys Rev. B. 45, (23):-1336313366 (1992).
37. Doris, B., Fretwell, J., Erskine, J. L. & Bannerjee, S. K., Appl. Phys. Lett. 70, (21):28192821 (1997).

The Growth of Homo-Epitaxial Silicon at Low Temperatures Using Hot Wire Chemical Vapor Deposition

  • J. Thiesen (a1), K.M. Jones (a2), R. Matson (a2), R. Reedy (a2), E. Iwaniczko (a2), H. Mahan (a2) and R. Crandall (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed