Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T05:44:48.876Z Has data issue: false hasContentIssue false

Growth of High Quality InGaN Films by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

J. C. Roberts
Affiliation:
Dept. of ECE, Box 7911, North Carolina State University, Raleigh, N.C. 27695
F. G. McIntosh
Affiliation:
Dept. of ECE, Box 7911, North Carolina State University, Raleigh, N.C. 27695
K. S. Boutros
Affiliation:
Dept. of ECE, Box 7911, North Carolina State University, Raleigh, N.C. 27695
S. M. Bedair
Affiliation:
Dept. of ECE, Box 7911, North Carolina State University, Raleigh, N.C. 27695
M. Moussa
Affiliation:
Air Defense Academy, Alexandria, Egypt
E. L. Piner
Affiliation:
Dept. of MSE, Box 7916, North Carolina State University, Raleigh, N. C. 27695
Y. He
Affiliation:
Dept. of MSE, Box 7916, North Carolina State University, Raleigh, N. C. 27695
N. A. El-Masry
Affiliation:
Dept. of MSE, Box 7916, North Carolina State University, Raleigh, N. C. 27695
Get access

Abstract

InGaN based optical devices can cover from the violet through orange regions of the visible spectrum. Difficulties in the growth of this alloy, which have impeded its applications, include problems such as the high vapor pressure of In, weak In-N bonds and lack of sufficient nitrogen during growth. We report on the MOCVD growth of InxGa1−xN (0 < x < 0.4) on sapphire substrates in the 750 - 800 °C temperature range. X-ray diffraction data show full width at half maximum line widths as narrow as 250 arcsec for low values of x, while films with higher lnN% exhibit broader line widths. Room temperature photoluminescence spectra exhibit band edge emission, with emission from deep levels increasing with x. Preliminary investigations of AlGaN/lnGaN/AlGaN double heterostructures have been conducted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Strite, S. and Morkoç, H., J. Vac. Sci. Tech., B10, 1237 (1992).Google Scholar
2 Asif Khan, M., Krishnankutty, S., Skogan, R. A., Kunznia, J. N., Olsen, D. T. and George, T., Appl. Phys. Lett., 65, 520 (1994).Google Scholar
3 Fertitta, K. G., Holmes, A. L., Neff, J. G., Ciuba, F. J. and Dupuis, R. D., Appl. Phys. Lett., 65, 1823 (1994).Google Scholar
4 Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett., 66, 1249 (1995).Google Scholar
5 Matsuoka, T., Tanaka, H., Sasaki, T., and Datsui, A., Inst. Phys. Conf., 106, 141 (1989).Google Scholar
6 Amano, H., Sawaki, N., Akasaki, I., and Toyada, Y., Appl. Phys. Lett., 48, 353 (1986).Google Scholar
7 McDermott, B., et al. , Appl. Phys. Lett., 56, 1172 (1990).Google Scholar
8 Karam, N., Parados, T., Rowland, W., Schetzina, J., El-Masry, N. and Bedair, S. M., Appl. Phys. Lett., 67, 94 (1995).Google Scholar
9 Boutros, K. S., Mcintosh, F. G., Roberts, J. C., Bedair, S. N., Piner, E. L. and El-Masry, N. A., Appl. Phys. Lett., accepted.Google Scholar
10 Piner, E. L., et al. , presented at MRS 1995 Fall Meeting.Google Scholar
11 Nakamura, S., Mukai, T., Jpn. J. Appl. Phys., 31, 1457 (1992).Google Scholar