Skip to main content Accessibility help

Growth of Hexagonal Boron Nitride on Microelectronic Compatible Substrates

  • Michael Snure (a1) and Qing S. Paduano (a1)


Boron nitride has attracted a great deal of attention as a two dimensional (2D) insulator for substrate and gate dielectric applications in 2D electronics. Development of a scalable technique to grow mono- to few-layer h-BN on microelectronics compatible substrates is desirable. Work on the growth of atomically smooth BN and graphene on sapphire and Si is presented in this paper. Two approaches are described: i) growth of h-BN and graphene on Si and sapphire substrates using a catalyzing Cu thin film, and ii) low pressure metal organic chemical vapor deposition (MOCVD) growth on sapphire. In approach i) we discuss problems associated with the thermal instability of Cu at the interface with the substrate and show how the stability may be improved through the use of a thin Ni buffer layer or careful substrate selection. The correlation between Cu film morphology and h-BN (and graphene) quality is shown. In approach ii) we find two different growth modes, 3D island growth at low V/III ratios and self-terminating growth at high V/III ratios. Under self-terminating growth atomically smooth few-layer h-BN films are produced. Nitridation of the sapphire surface is found to promote this self-terminating growth by improving nucleation of BN on the substrate. Finally, we present results from the growth of graphene/h-BN on sapphire in a single process.



Hide All
[1] Novoselov, K. S., et al. Science 306, 666 (2004).
[2] Taniguchi, T., Sato, T., Utsumi, W., Kikegawa, T., and Shimomura, O., Diam. Relat. Matter. 6, 1806 (1997).
[3] Tao, O, Yuanping, C., Yuee, X., Kaike, Y., Zhigang, B., and Jianxin, Z., Nanotechnology 21, 245701 (2010).
[4] Balandin, A. A., Nat. Mater. 10, 569 (2011).
[5] Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Kvashnin, A. G., Kvashnin, D. G., Lou, J., Yakobson, B. I., and Ajayan, P. M., Nano Lett. 10, 3209 (2010).
[6] Mayorov, A. et al. Nano Lett. 11, 2396 (2011).
[7] Chen, J. H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M. S., Nature Nanotech. 3, 206 (2008).
[8] Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., Williams, E. D., Nano Lett. 7, 1643 (2007).
[9] Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Hofmann, M., Nezich, D., Rodriguez-Nieva, J. F., Dresselhaus, M., Placios, T., Kong, J., Nano Lett..12, 161 (2012).
[10] Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R. D., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. S. Science 324, 1312 (2009).
[11] Ismach, A., Chou, H., Ferrer, D. A., Wu, Y., McDonnell, S., Floresce, C. H., Covacevich, A., Pope, C., Piner, R., Kim, M. J., Wallace, R. M., Colombo, L., and Ruoff, R. S., Nano 6, 6378 (2012).
[12] Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., Hong, B. H., Nature 457, 706 (2009).
[13] Lu, J., Yeo, P. S. E., Zheng, Y., Xu, H., Gan, C. K., Sullivan, M. B., Neto, A. H. C., and Loh, K. P., J. Am. Chem. Soc. 135, 2368 (2013).
[14] Li, X., Cai, W., Colombo, L., Ruoff, R. S., Nano Lett. 9, 4268 (2009).
[15] Levendorf, M. P., Rulz-Vargas, C. S., Garg, S., and Park, J., Nano Lett. 9, 4479 (2009).
[16] Caneva, S. et al. Nano Lett. DOI: 10.1021/nl5046632 (2015).
[17] Emtsev, K. V. et al. Nature Mat. 8, 203 (2009).
[18] Morean, E., Godey, S., Ferrer, F. J., Vingnaud, D., Wallart, X., Avila, J., Asensio, M. C., Bournel, F., Gallet, J. J., App. Phys. Lett. 97, 241907 (2010).
[19] Lin, Y., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H. Y., Grill, A., Avouris, Ph., Science 327, 662 (2010).
[20] Kedzierski, J, et al. IEEE Trans. Electron. Dev. 55, 2078 (2008).
[21] Hwang, J. et al. ACS Nano 7, 385 (2013).
[22] Tang, S., Ding, G., Xie, X., Chen, J., Wang, C., Ding, X., Huang, F., Lu, W., Jiang, M., Carbon 50, 329331 (2012).
[23] Shen, T., Gu, J. J., Xu, M., Wu, Y. Q., Bolen, M. L., Capano, M. A., Engel, L. W., Ye, P. D.. App. Phys. Lett. 95, 172105 (2009).
[24] Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M. F., Zettl, A., App. Phys. Lett. 98, 242105 (2011).
[25] Nakamura, T., Electrochem, J.. Soc. 133, 1120 (1986).
[26] Kobayashi, Y., Akasaka, T., Crystal Growth, J., 310 5044 (2008).
[27] Chubarov, M., Pedersen, H., Hogberg, H., Jensen, J., Henry, A., Cryst. Growth Des. 12, (2012) 3215.
[28] Paduano, Q. S. and Snure, M., Appl. Phys. Exp. 7, 071004, (2014).
[29] Nemanich, R. J., Solin, S. A., and Martin, R. M., Phys. Rev. B 23, 6348(1981).
[30] Spizzirri, P. G., Fang, J-H., Rubanov, S., Gauja, E., and Prawer, S.. arXiv preprint arXiv:1002.2692 (2010).
[31] Gorbachev, R. V., Riaz, I., Nair, R. R., Jalil, R., Britnell, L., Belle, B. D., Hill, E. W., Novoselov, K. S., Watanabe, K., Taniguchi, T., Geim, A. K., Blake, P., Small 7, 465 (2011).
[32] Malard, L. M., Pimenta, M. A., Dresselhause, G., Dresselhaus, M. S., Physics Reports 473,51 (2009).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed