Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T04:16:15.622Z Has data issue: false hasContentIssue false

Growth of GaAs on Si and its Application to FETs and LEDs

Published online by Cambridge University Press:  25 February 2011

Masahiro Akiyama
Affiliation:
Research Laboratory, Oki Electric Industry Co., Ltd.550–5 Higashiasakawa, Hachioji, Tokyo 193
Yoshihiro Kawarada
Affiliation:
Research Laboratory, Oki Electric Industry Co., Ltd.550–5 Higashiasakawa, Hachioji, Tokyo 193
Seiji Nishi
Affiliation:
Research Laboratory, Oki Electric Industry Co., Ltd.550–5 Higashiasakawa, Hachioji, Tokyo 193
Takashi Ueda
Affiliation:
Research Laboratory, Oki Electric Industry Co., Ltd.550–5 Higashiasakawa, Hachioji, Tokyo 193
Katsuzo Kaminishi
Affiliation:
Research Laboratory, Oki Electric Industry Co., Ltd.550–5 Higashiasakawa, Hachioji, Tokyo 193
Get access

Extract

In recent years, the heteroepitaxial growth of GaAs layers on Si substrates has been gained an increasing interest [1 - 14]. GaAs is one of the most important III-V materials and has been well studied and used for optical and electrical devices. On the other hand, with Si we have large size wafers of superior quality and sophisticated technologies and Si is a main material for semiconductor industries. Therefore, GaAs/Si system has possibilities for realizing new types of functional devices or ICs with GaAs and Si devices. This system, however, has two serious problems. One is the large lattice mismatch of about 4 % between these materials and the other is the polar on nonpolar problem i.e., the formation of an antiphase domain disorder. It was reported that when (211)-oriented Si substrates were used, there was no problem of the formation of an antiphase domain structure 5. For growing materials on lattice mismatched substrates, it was reported that the thin layers deposited at low temperatures were effective to relax the lattice mismatches for the systems such as SiC on Si[15] and Si on saphire [16]. In GaAs/Si system, the Ge buffer layer has been used to relax the lattice mismatch[17 - 22] It was also reported that the composite strained layer superlattice with GaP/GaAsP and GaAsP/GaAs was very effective as a buffer layer[23 - 25].

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Wang, W. I., Appl. Phys. Lett. 44 (1984) 1149 Google Scholar
2) Masselink, W. T., Henderson, T., Klem, J., Fischer, R., Pearah, P. and Morkoc, H., Hafich, M., Wang, P. D. and Robinson, G. Y., Appl. Phys. Lett. 45 (1984) 1309 Google Scholar
3) Tsaur, B-Y. and Metze, G. M., Appl. Phys. Lett. 45 (1984) 535 Google Scholar
4) Fischer, R., Masselink, W. T., Klem, J., Henderson, T., McGlinn, T. C., Klein, M. V., Morkoc, H., Mazur, J. H. and Washburn, J., J. Appl. Phys. 58 (1985) 374 CrossRefGoogle Scholar
5) Uppal, P. N. and Kroemer, H., J. Appl. Phys. 58 (1985) 2195 CrossRefGoogle Scholar
6) Fischer, R., Henderson, T., Klem, J., Masselink, W. T., Morkoc, W. Kopp. H. and Litton, C. W., Electron. Lett. 20 (1984) 945 CrossRefGoogle Scholar
7) Metze, G. M., Choi, H. K. and Tsaur, B. Y., Appl. Phys. Lett. 45 (1984) 1107 Google Scholar
8) Morkoc, H., Peng, C. K., Henderson, T., Copp, W., Fischer, R., Elickson, L. P., Lingerbone, M. D. and Youngman, R. C., IEEE Electron. Device Lett. EDL–6 (1985) 381 CrossRefGoogle Scholar
9) Windhorn, T. H. and Metze, G. M., Appl. Phys. Lett. 47 (1985) 1031 Google Scholar
10) Fischer, R., Henderson, H., Klem, J., Kopp, W., Peng, C. K., Morkoc, H., Detry, J. and Blackstone, S. C., Appl. Phys. Lett. 47 (1985) 983 Google Scholar
11) Fischer, R., Klem, J., Gedymin, J. S., Henderson, T., Kopp, W. and Morkoc, H., IEDM Tech. Digest (1985) 332 Google Scholar
12) Choi, H. K., Turner, G. W. and Tsaur, B-Y., IEDM Tech. Digest (1985) 766 Google Scholar
13) Fischer, R., Klem, J., Henderson, T., Peng, C. K. and Morkoc, H., GaAs IC Symp. Tech. Digest (1985) 71 Google Scholar
14) Fischer, R. J., Chand, N., Kopp, W. F., Peng, C. K., Morkoc, H., Greason, K. R. and Scheitlin, D., IEEE Electron Devices ED–33 (1986) 206 Google Scholar
15) Nishino, S., Hazuki, Y., Matsunami, H. and Tanaka, T., J. Electrochem. Soc. 127 (1980) 2674 CrossRefGoogle Scholar
16) Ishida, M., Ohyama, H., Sasaki, S., Yasuda, Y., Nishinaga, T. and Nakamura, T., Jpn. J. Appl. Phys. 20 (1981) L541 Google Scholar
17) Fan, J. C. C., Gale, R. P., Davis, F. M. and Foley, G. H., Appl. Phys. Lett. 37 (1980) 1024 Google Scholar
18) Gale, R. P., Fan, J. C. C., Tsaur, B-Y., Turner, G. W. and Davis, F. M., IEEE Electron Device Lett. EDL–2 (1981) 169 Google Scholar
19) Sheldon, P., Jones, K. M., Hayes, R. E., Tsaur, B-Y. and Fan, J. C. C., Appl. Phys. Lett. 45 (1984) 274 Google Scholar
20) Choi, H. K., Tsaur, B. Y., Metze, G. M., Turner, G. W. and Fan, J. C. C., IEEE Electron Device Lett. EDL–5 (1984) 207 Google Scholar
21) Fletcher, R. M., Wagner, D. Ken and Ballantyne, J. M., Appl. Phys. Lett. 44 (1984) 967 Google Scholar
22) Windhorn, T. H., Metze, G. M., Tsaur, B-Y. and Fan, J. C. C., Appl. Phys. Lett. 45 (1984) 309 Google Scholar
23) Soga, T., Hattori, S., Sakai, S., Takeyasu, M. and Umeno, M., Electron. Lett. 20 (1984) 916 Google Scholar
24) Soga, T., Hattori, S., Sakai, S., Takeyasu, M. and Umeno, M., J. Appl. Phys. 57 (1985) 4578 CrossRefGoogle Scholar
25) Sakai, S., Soga, T., Takeyasu, M. and Umeno, M., Appl. Phys. Lett. 48 (1986) 413 Google Scholar
26) Akiyama, M., Kawarada, Y. and Kaminishi, K., J. Cryst. Growth 61 (1984)21 Google Scholar
27) Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23 (1984) L843 Google Scholar
28) Nishi, S., Inomata, H., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 24 (1985) L391 CrossRefGoogle Scholar
29) Kaplan, R., Surf. Sci. 93 (1980) 145 Google Scholar
30) Sakamoto, T. and Hashiguchi, G., Jpn. J. Appl. Phys. 25 (1986) L78 Google Scholar
31) Kroemer, H., Polasko, K. J. and Wright, S. C., Appl. Phys. Lett. 36 (1980) 763 Google Scholar
32) Nonaka, T., Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23 (1984) L919 Google Scholar
33) Akiyama, M., Kawarada, Y. and Kaminishi, K., J. Crys. Growth 68 (1984) 39 CrossRefGoogle Scholar
34) Inomata, H., Nishi, S., Akiyama, M., Itoh, M., Takahashi, S. and Kaminishi, K., Gallium Arsenide and Related Compounds 1985 (Inst. Phys. Conf. Ser. No.79) 481 Google Scholar
35) Hashimoto, A., Kawarada, K., Kamijoh, T.. Akiyama, M., Watanabe, N. and Sakuta, M., IEDM Tech. Digest (1985) 658 Google Scholar