Skip to main content Accessibility help

Growth of Fe/ZnSe Multilayers on GaAs (001) AND (111) by Molecular Beam Epitaxy

  • H. Abad (a1), B. T. Jonker (a2), C. M. Cotell (a2), S. B. Qadri (a2) and J. J. Krebs (a2)...


The growth of Fe/ZnSe/Fe multilayers on (001) and (111) GaAs substrates is reported. The samples were characterized in-situ by reflection high energy electron diffraction (RHEED), and ex situ by vibrating sample magnetometry (VSM), ferromagnetic resonance (FMR), cross sectional transmission electron microscopy (TEM), and x-ray diffraction. On the (001) surface, the quality of the layers deteriorated significantly with the growth of the first ZnSe spacer layer. In Fe/ZnSe/Fe trilayer structures, TEM revealed a well-defined layered structure, with a high density of defects in both the ZnSe spacer layer and the subsequent Fe layer. VSM and FMR clearly showed the presence of two Fe films with distinct coercive fields, with the higher coercive field attributed to the lower crystalline quality of the second Fe layer. θ-2θ xray diffraction measurements performed on samples grown on (001) GaAs substrates indicated that the ZnSe spacer layer (grown on (001) Fe) grew in a (111) orientation. Growth on GaAs(111) substrates produced better RHEED patterns for all layers with little deterioration in film quality with continued layer growth, so that the magnetic properties of the individual Fe layer could not be distinguished.



Hide All
1.See for example Ultra Thin Magnetic Structures II, edited by Heinrich, B. and Bland, J. A. C. (Springer-Verlaag, Berlin, 1994), chap. 2.; and Magnetic Ultrathin Films, edited by B. T. Jonker, S. A.. Chambers, R. F. C. Farrow et al. (Materials Research Society, Pittsburgh, 1993) vol. 313.
2. Mattson, J. E., Kumar, Sodha, Fullerton, Eric E., Lee, S. R., Sowers, C. H., Grimsditch, M., Bader, S. D., and Parker, F. T., Phys. Rev. Lett., 71, 185, (1993).
3. Briner, B. and Landolt, M., Phys. Rev. Lett., 73, 340, (1994).
4. Inomata, K., Yusu, K., and Saito, Y., Phys. Rev. Lett., 74, 1863, (1995)
5. Krebs, J. J., Jonker, B. T., and Prinz, G. A., J. Appl. Phys. 61, 3744 (1987); B. T. Jonker, J. J. Krebs, G. A. Prinz and S. B. Qadri, J. Cryst. Growth 81, 524, (1987).
6. Jonker, B. T. and Prinz, G. A., J. Appl. Phys. 69, 2938, (1991); B. T. Jonker, G. A. Prinz and Y. U. Idzerda, J. Vac. Sci. Technol. B 9, 2437, (1991).
7. Fang, S. F., Adomi, K., Lyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys., 68, R31, (1990).
8. Gaines, J. M., Petruzzello, J., and Greenberg, B., J. Appl. Phys., 73, 2835, (1993).
9. Abad, H., Jonker, B. T., Cotell, C. M. and Krebs, J. J., J. Vac. Sc. Tech. B 13, 716, (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed