Skip to main content Accessibility help

Growth of Device-Quality Homoepitaxial Diamond Thin Films

  • M. W. Geis (a1)


Diamond has an electric-field breakdown 20 times that of Si and GaAs, and a saturated velocity twice that of Si. This results in a predicted cut off frequency for high-power diamond transistors 40 times that of similar devices made of Si or GaAs. Boron is the only known impurity that can be used to lightly dope diamond. This p-type dopant has an activation energy of 0.3 to 0.4 eV, which results in high-resistivity material that is undesirable for devices. However, heavily boron doped diamond has a very small activation energy and a low resistivity and is of device quality. Transistors can be designed that use only undoped and heavily doped diamond. One of the steps in a device fabrication sequence is homoepitaxial diamond growth. Lightly and heavily doped homoepitaxial diamond films were characterized by scanning and transmission electron microscopy, x-ray diffraction, measurements of resistivity as a function of temperature, and secondary ion mass spectroscopy. It was found that under appropriate growth conditions these films are of device quality.



Hide All
1. Liao, S. Y., Microwave Devices and Circuits (Prentice-Hall, Englewood Cliffs, N.J., 1985), pp. 302304.
2. Sze, S. M. and Gibbons, G., Appl. Phys. Lett. 8, 111 (1966).
3. Bogdanov, A. V., Vikulin, I. M., and Bogdanova, T. V., Sov. Phys. Semicond. 16, 720 (1982).
4. Bazhenov, V. K., Vikulin, I. M., and Gonar, A. G., Soy. Phys. Semicond. 19, 829 (1985).
5. Konoirova, E. A., Kuznetsov, Yu. A., Sergienko, V. F., Tkachenko, S. D., Tsikunov, A. V., Sov. Phys. Semicond. 17, 146 (1983).
6. Collins, A. T., Semicond. Sci. Tech. 4, 605 (1989).
7. Collins, A. T. and Lightowlers, E. C., in The Properties of Diamond, ed. Field, J. E. (Academic Press, New York, 1979), pp. 80105.
8. Irvin, J. C., Bell Syst. Tech. J. 41, 387 (1962).
9. Efermow, N. N., Geis, M. W., Flanders, D. C., Lincoln, G. A., and Economou, N. P., J. Vac. Sci. Technol. B 3, 416 (1985).
10. Moazed, K. L., Nguyen, R., and Zeider, J. R., IEEE Electron Device Lett. EDL–7, 350 (1988).
11. Geis, M. W., Rothschild, M., Kunz, R. R., Aggarwal, R. L., Wall, K. F., Parker, C. D., McIntosh, K. A., Efremow, N. N., Zayhowski, J. J., and Ehrlich, D. J., Appl. Phys. Lett. 55, 2295 (1989).
12. Derjaguin, B. V., Spitsyn, B. V., Goridetsky, A. E., Zakharov, A. P., Bouilov, L. L., and Sleksenko, A. E., J. Cryst. Growth 31, 44 (1975).
13. Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).
14. Geis, M. W., in the Proceedings of the SDIO/IST-ONR Diamond Technology Initiative Symposium (Crystal City, VA, 1989).
15. Geis, M. W., Gregory, J. A., and Pate, B. B., submitted to IEEE Trans. Electron Devices.
16. Okano, K., Naruki, H., Akiba, Y., Kurosu, T., lida, M., Hirose, Y., and Nakamura, T., Jpn. J. Appl. Phys. 28, 1066 (1989).
17. Badzian, A. R. and Badzian, T., in the Proceedings of the SDIO/IST-ONR Diamond Technology Initiative Symposium (Crystal City, VA, 1989).
18. Rothschild, M., Arnone, C., and Ehrlich, D. J., J. Vac. Sci. Technol. B 4, 310 (1986).
19. The SIMS was performed by Charles Evans and Associates, 301 Cheapeake Drive, Redwood, CA 94063.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed