Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T20:30:27.538Z Has data issue: false hasContentIssue false

Growth of Complex Epitaxial Multi-Component Oxide Thin Films and Heterostructures with Strong Anisotropy

Published online by Cambridge University Press:  07 July 2011

Kazuhiro Endo
Affiliation:
Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
Petre Badica
Affiliation:
National Institute of Materials Physics, Atomistilor 105bis, Bucharest-Magurele 077125, Romania
Hidehito Nanto
Affiliation:
Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
Yoshinori Takei
Affiliation:
Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
Shunichi Arisawa
Affiliation:
National Institute for Material Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Hirofumi Yamasaki
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono Tsukuba, Ibaraki 305-8568 Japan
Katherine Develos-Bagarinao
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono Tsukuba, Ibaraki 305-8568 Japan
Tamio Endo
Affiliation:
Mie University, 1577 Kurima, Tsu, Mie 514-8507, Japan
Get access

Abstract

We briefly review our data on MOCVD growth problems of sandwich stacked heterostructures based on Bi-Sr-Ca-Cu-O and YBa2Cu3O7 high temperature superconductors. Non-superconducting layers were (Ca, Sr)CuO2, (Ca, Ba)CuO2 and Bi4Ti3O12. Structures were with c-axis normal or inclined with about 45° vs. the surface of the substrate. Film-substrate lattice relationship, growth mechanism and the resulting morphology controlling roughness and uniformity, stability domain of the phases and inter diffusion are all important aspects toward significant progress in the field. Our analysis indicates that requirements are more severe for non-c-axis heterostructures, and suggest some ideas for further improvements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Endo, K., Yamasaki, H., Misawa, S., Yoshida, S., Kajimura, K., Nature 355, 327 (1992).Google Scholar
[2] Endo, K., Badica, P., Itoh, J., Physica C 386, 318 (2003).Google Scholar
[3] Endo, K., Badica, P., Physica C 408-410, 904 (2004).Google Scholar
[4] Endo, K., Badica, P., Proc. SPIE Int. Soc. Opt. Eng. 4811, 130 (2002).Google Scholar
[5] Endo, K., Badica, P., IEEE Trans. Appl. Supercond. 15(2), 3066 (2005).Google Scholar
[6] Endo, K., Badica, P., Kado, H., IEEE Trans Appl. Supercond. 19(3), 3439 (2009).Google Scholar
[7] Endo, K., Badica, P., Supercond. Sci. Technol. 20, S430 (2007).Google Scholar
[8] Endo, K., Badica, P., Cryst. Gr. & Design 9, 391 (2009).Google Scholar
[9] Horiuchi, S., Takayama-Muromachi, E. in Crystal structure in Bismuth-based high-temperature superconductors, edited by Maeda, H., Togano, K., (Marcel Dekker Inc.: New York, 1996) pp732; ISBN 0-8247-9690-X.Google Scholar
[10] Endo, K., Badica, P., Sato, H., Akoh, H., Supercond. Sci. Technol. 19, S221 (2006).Google Scholar
[11] Zhao, J. et al. , J. Crystal Growth 107 699 (1991).Google Scholar
[12] Endo, K., Badica, P., Uehara, G., Kado, H., IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2011.2106753 (2011).Google Scholar