Skip to main content Accessibility help
×
Home

Growth of “colossal” magnetoresistance heterostructures by molecular beam epitaxy

  • J. O'Donnell (a1), A. E. Andrus (a1), S. Oh (a1), E. Colla (a1), M. Warusawithana (a1), B. A. Davidson (a1) and J. N. Eckstein (a1)...

Extract

We discuss the heteroepitaxial growth of La1−xSrxMnO3 films and CaTiO3 insulating barriers by molecular beam epitaxy. We find that the surface morphology and residual resistivity of the manganite electrodes is critically dependent on the film stoichiometry. The most important parameter is the concentration of La+Sr (cubic perovskite A-site cations) to that of Mn (B-site cation). If La+Sr is supplied in slight excess, the films grow with atomically flat surfaces, but the residual resistivity at 4.2K is high (as high as 6500 µΩ-cm), and Curie temperature (Tc) low (<300 K). If Mn is supplied in slight excess, the films have high Tc (370 K) and residual resistivity (35 µΩ-cm) better than bulk single crystal values, but the surface is no longer atomically flat. There appears to be a very narrow region of phase space where it is possible to have low resistivity, high Tc films with atomically flat surfaces. This is precisely where one would like to place heterostructure devices.

Copyright

References

Hide All
1 O'Donnell, J., Andrus, A. E., Oh, S., Colla, E., and Eckstein, J. N. (submitted to Appl.Phys. Lett.)
2 Viret, M., Drouet, M., Nassar, J., Contour, J.P., Fermon, C., and Fert, A., Europhys. Lett. 39, 545 (1997).
3 Soulen, R. J. Jr., Osofsky, M. S., Nadgomy, B., Ambrose, T., Broussard, P., Cheng, S. F., Byers, J., Tanaka, C. T., Nowack, J., Moodera, J. S., Laprade, G., Barry, A. and Coey, M. D., Journ. Appl. Phys. 85, 4589 (1999).
4 Zener, C., Phys. Rev. 82, 403 (1951).
5 For a review of the physics of the manganites see Imada, M., Fujimori, A., Tokura, Y., Rev. Mod. Phys. 70, 1309 (1998).
6 Sun, J. Z., Krusin-Elbaum, L., Duncombe, P. R., Gupta, A., and Laibowitz, R. B., Appl. Phys. Lett. 70, 1769 (1997);
Sun, J. Z., Abraham, D. W. Roche, K., and Parkin, S. S. P., Appl. Phys. Lett. 73, 1008 (1998).
7 Obata, T., Manako, T., Shimakawa, Y., and Kubo, Y., Appl. Phys. Lett. 74, 290 (1999).
8 Kwon, C., Jia, Q. X., Fan, Y., Hundley, M. F., and Reagor, D. W., J. Appl. Phys. 83, 7052 (1998);
Kwon, C., Jia, Q. X., Fan, Y., Hundley, M. F., Reagor, D. W., Coulter, J. Y., and Peterson, D. E., Appl. Phys. Lett. 72, 486 (1998).
9 Koller, D., Osofsky, M. S., Chrisey, D. B., Horwitz, J. S., Soulen, R. J. Jr., Stroud, R. M., Eddy, C. R., Kim, J., Auyeung, R. C. Y., Byers, J. M., Woodfield, B. F., Daly, G. M., Clinton, T. W., and Johnson, M., Journ. Appl. Phys. 83 6774 (1998).
10 Stroud, R. M., Kim, J., Eddy, C. R., Chrisey, D. B., Horwitz, J. S., Koller, D., Osofsky, M. S., Soulen, R. J. Jr., Auyeung, R. C. Y., Journ Appl. Phys. 83, 7189 (1998).
11 Eckstein, J. N. and Bozovic, I., Annu. Rev. Mater. Sci. 25, 679 (1995).
12 Roosmalen, J. A. M. Van, Vlaanderen, P. van, Cordfunke, E. H. P., Ijdo, W. L., and IJdo, D. J. W., J. Solid State Chem. 93, 213 (1991).
13 Tofield, B. C. and Scott, W. R., J. Solid State Chem. 10, 183 (1974).
14 Mitchell, J. F., Argyriou, D. N., Potter, C. D., Hinks, D. G., Jorgensen, J. D., and Bader, S. D., Phys. Rev. B 54, 6172 (1996).
15 Urushibara, A. Moritomo, Y. Arima, T. Asamitsu, A. Kido, G. Tokura, Y., Phys. Rev. B 51, 14103 (1995).
16 Altshuler, B., Aronov, G. and Lee, P., Phys. Rev. Lett. 44, 1288, (1980).
17 Stadler, S., Idzerda, Y. U., Chen, Z., Ogale, S. B., and Venkatesan, T., Appl. Phys. Lett. 75, 3384 (1999).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed