Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T19:37:21.286Z Has data issue: false hasContentIssue false

Growth of Carbon Nanotubes on Copper Substrates Using a Nickel Thin Film Catalyst

Published online by Cambridge University Press:  31 January 2011

Gowtam Atthipalli
Affiliation:
gautamthegr8@gmail.com, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, United States
Prashant Kumta
Affiliation:
pkumta@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, United States
Wei Wang
Affiliation:
wwpxy1@gmail.com, Carnegie Mellon University, Materials Science and Engineering, Pittsburgh, United States
Rigved Epur
Affiliation:
rre5@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, United States
Prashanth H Jampani
Affiliation:
pjampani@pitt.edu, University of Pittsburgh, Chemical and Petroleum Engineering, Pittsburgh, United States
Brett L. Allen
Affiliation:
bla10@pitt.edu, University of Pittsburgh, Chemistry, Pittsburgh, United States
Yifan Tang
Affiliation:
yit12@pitt.edu, University of Pittsburgh, Chemistry, Pittsburgh, United States
Alexander Star
Affiliation:
astar@pitt.edu, University of Pittsburgh, Chemistry, Pittsburgh, United States
Jennifer Gray
Affiliation:
jlg99@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, United States
Get access

Abstract

Carbon nanotubes with their attractive properties, one-dimensional character, and their large aspect ratio are ideal candidates for a variety of applications including energy storage, sensing, nanoelectronics, among others. We have studied the growth of carbon nanotubes on copper substrates using a nickel thin film as a catalyst. The catalyst was sputtered in a chamber having a base pressure in the ultra-high-vacuum regime. By adjusting the sputtering parameters, the effects of the morphology and the thickness of the nickel catalyst on the growth of carbon nanotubes have also been investigated. Multiple hydrocarbon sources as carbon feedstock (methane, acetylene and xylene) and corresponding catalyst precursors and varying temperature conditions were used during the Chemical Vapor Deposition (CVD) process to understand and best determine the ideal conditions for carbon nanotube growth on copper. Correlation between the thickness of the thin film nickel catalyst and the carbon nanotube diameter is also presented in the study. Characterization techniques used to study the morphology of the CNTs grown on copper include SEM, TEM and HRTEM, Raman Spectroscopy

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Harris, P.J.F., Carbon Nanotubes and Related Structures, (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
3. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, (Academic, New York, 1996).Google Scholar
4. Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).Google Scholar
5. Li, W.Z., Wen, J.G., Tu, Y., and Ren, Z.F., Appl. Phys. A: Mater. Sci. Process 73, 259 (2001).10.1007/s003390100916Google Scholar
6. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).Google Scholar
7. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N., Science 282, 1105 (1998).10.1126/science.282.5391.1105Google Scholar
8. Esconjauregui, S., Whelan, C.M., and Maex, K., Carbon 47, 659 (2009).Google Scholar
9. Li, Y.S. and Hirose, A., Applied Surface Science 255, 2251 (2008).Google Scholar
10. Gao, L., Peng, A., Wang, Z.Y., Zhang, H., Shi, Z., Gu, Z., Cao, G., and Ding, B., Solid State Solid State Commun. 146, 380 (2008).Google Scholar
11. Bonnet, F., Ropital, F., Berthier, Y.. and Marcus, P., Mater. Corr. 54, 870 (2003).Google Scholar
12. Bokx, P.K. de, Kock, A.J.H.M., Boellaard, E., Klop, W., and Geus, J.W., J. Catal. 96, 454 (1985).Google Scholar
13. Sinharoy, S., Smith, M.A., and Levenson, L.L., Surf. Sci. 72, 710 (1978).Google Scholar
14. Sinharoy, S. and Levenson, L.L., Thin Solid Films 53, 31 (1978).Google Scholar
15. Lin, N., Wang, H., Dixit, P., Xu, T., Zhang, S., and Miao, J., J. Electrochem. Soc. 156, K23 (2009).Google Scholar
16. Wang, H., Feng, J.Y., Hu, X.J., and Ng, K.M., J. Phys. Chem. C. 111, 12617 (2007).Google Scholar
17. Zhou, W., Han, Z., Wang, J., Zhang, Y., Jin, Z., Sun, X., Zhang, Y., Yan, C., Li, Y., Nano Letters 6, 2987 (2006).Google Scholar
18. Takagi, D., Homma, Y., Hibino, H., Suzuki, S., Kobayashi, Y., Nano Letters 6, 2642 (2006).Google Scholar
19. Li, G., Chakrabarti, S., Schulz, M., and Shanov, V., J. Mater. Res. 24, 2813 (2009).Google Scholar
20. Pal, S.K., Talapatra, S., Kar, S., Ci, L., Vajtai, R., Borca-Tasciuc, T. Schadler, L.S., and Ajayan, P.M., Nanotechnology 19, 045610 (2008).Google Scholar
21. Rodriguez, N.M., Mate, J.. Res. 80, 3233 (1993).Google Scholar
22. Qin, L.C., Zhou, D., Krauss, A.R., and Gruen, D.M., Appl. Phys. Lett. 72, 3437 (1998).Google Scholar
23. Kanzow, H. and Ding, A., Phys. Rev. B 60, 11180 (1999).Google Scholar
24. Baker, R.T.K., Carbon 27, 315 (1989).Google Scholar
25. Wei, Y.Y., Eres, G., Merkulov, V.I., and Lowndes, D.H., Appl. Phys. Lett. 78, 1394 (2001).Google Scholar
26. Jones, R., Öberg, S., Goss, J., Briddon, P.R., and Resende, A., Phys. Rev. Lett. 75, 2734 (1995).10.1103/PhysRevLett.75.2734Google Scholar
27. Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev. 75, 547 (1975).Google Scholar
28. DiLeo, R.A., Landi, B.J., and Raffaelle, R.P., J. Appl. Phys. 101, 064306 (2007).Google Scholar