Skip to main content Accessibility help
×
Home

Growth of Boron Nanowires by Chemical Vapor Deposition

  • Li Guo (a1) and Raj N. Singh (a2)

Abstract

Motivated by the extensive research on carbon nanotubes (CNTs), boron and its related nano-structures have attracted increasing interests for potential applications in nanodevices and nanotechnologies due to their extraordinary properties. B-related nanostructures are successfully grown on various substrates in a CVD process. The boron nanowires have diameters around 50-200 nanometers and lengths up to a few microns. The gas chemistry is monitored by the in-situ mass-spectroscopy, which helps to identify reactive species in the process. Modified vapor-solid growths as well as VLS growth mechanisms are proposed for the growth of these nanostructures. The role of the catalysts in the synthesis is also discussed.

Copyright

References

Hide All
1. Werheit, H., in Electric Refractory Materials, ed. Y. Kumashiro (Marcle Dekker, Inc., 2000) pp.589-674.
2. Werheit, H., Laux, M., and Kuhlmann, U., Phys. Stat. Sol. B 176, 415 (1993).
3. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature 410, 63 (2001).
4. Eremets, M. I., Struzhkin, V. V., Mao, H., and Hemley, R. J., Science 293, 272 (2001).
5. Gaule, G. K., Ross, R.L., and Bloom, J. L., in Boron Volume2: Preparation, Properties and Applications, ed. Gaule, G. K. (Plenum Press, 1965) pp. 317338.
6. Dietz, W., and Helmberger, H., in Boron Volume 2: Preparation, Properties and Applications, ed. Gaule, G. K. (Plenum Press, 1965) pp. 301316.
7. Cao, L., Zhang, Z., Sun, L., Gao, C., He, M., Wang, Y., Li, Y., Zhang, X., Li, G., Zhang, J., and Wang, W., Adv. Mater. 13, 1701 (2001).
8. Otten, C. J., Lourie, O. R., Yu, M. F., Cowley, J. M., Dyer, M. J., Ruoff, R. S., and Buhro, W. E., J. Am. Chem. Soc. 124, 4564 (2002).
9. Wang, Z., Shimizu, Y., Sasaki, T., Kawaguchi, K., Kimura, K., and Koshizaki, N., Chem. Phys. Lett. 368, 663 (2003).
10. Wu, J. Z., Yun, S. H., Dibos, A., Kim, D. K., and Tidrow, M., Microelectronics J. 34, 463 (2003).
11. Jiang, J., Cao, M., Sun, Y., Wu, P., and Yuan, J., Appl. Phys. Lett. 88, 163107 (2006).
12. Guo, L., Singh, R.N., and Kleebe, H. J., Ceramic Transactions. 172, 79 (2006).
13. Guo, L., Singh, R. N., and Kleebe, H. J., J. Nanomaterials. 2006, 58237 (2006).
14. Guo, L., Singh, R. N., and Kleebe, H. J., CVD 12 (7), 448 (2006).
15. Weber, W., Thorpe, M. -F., J. Phys. Chem. Solids 36, 967 (1975).
16. Tallant, D.R., Aselage, T. L., Campbell, A. N., and Emin, D., Phys. Rev. B 40, 5649 (1989).
17. Boustani, I., Quandt, A., Hernandez, E., and Rubio, A., J. Chem. Phys. 110, 3176 (1999).
18. Desrosiers, R. M., Greve, D. W., Gellman, A. J., J. Vac. Sci. Technol. A 15, 2181 (1997).
19. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).

Keywords

Related content

Powered by UNSILO

Growth of Boron Nanowires by Chemical Vapor Deposition

  • Li Guo (a1) and Raj N. Singh (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.