Skip to main content Accessibility help
×
Home

Growth of aligned wurtzite GaN nanorods on Si(111): Role of Silicon nitride intermediate layer

  • Praveen Kumar (a1), Malleswararao Tangi (a1), Satish Shetty (a1), Manoj Kesaria (a1) and S. M. Shivaprasad (a1)...

Abstract:

We present here a report on a role of initial nitridation of Si(111) surface on GaN nanorod growth. High quality wurtzite GaN nanorods are grown by Molecular Beam Epitaxy on bare Si(111)-7x7, crystalline and amorphous silicon nitride at 750oC, under nitrogen rich conditions. Using in-situ reflection high energy electron diffraction and ex-situ X-ray photoelectron spectroscopy, field emission scanning electron microscopy and photoluminescence, the structural and chemical properties are monitored. In the first part of the study, we have optimized the conditions of the N2* RF plasma, for formation of crystalline and amorphous silicon nitride on Si(111)-7x7 surface. While in the second part, GaN nanorods are grown on clean and these modified Si(111) substrates. Anisotropic spots are observed by RHEED for GaN grown on clean Si and on the amorphous silicon nitride, while circular, sharp and intense RHEED spots have been observed for GaN grown on crystalline Si3N4. FESEM results show nanorod growth in all the three different conditions. However, GaN nanorods grown on crystalline Si3N4 surface are observed to be self aligned and oriented along <0001> direction, while those grown on amorphous silicon nitride and bare Si(111) surfaces show great disorder increasing, respectively. Overall, the results clearly demonstrate that high quality of dense and self aligned c-oriented GaN nanorods can be formed on Si(111) surface by modifying it by appropriate nitridation.

Copyright

Corresponding author

*Corresponding Author Email: smsprasad@jncasr.ac.in

References

Hide All
1. Thahab, S. M., Abu Hassan, H., and Hassan, Z., World Academy of Science, Engineering and Technology, 55 (2009) 11.
2. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., Adv. Mater., 15 (2003) 353.
3. Choi, J. H., Zoulkarneev, A., Kim, S., Baik, C. W., Yang, M. H., Park, S. S., Suh, H., Kim, U. J., Son, H. B., Lee, J. S., Kim, M., Kim, J. M. and Kim, K., Nature Photonics, (In press doi:10.1038/nphoton.2011.253)
4. Chen, Z., Cao, C., Li, W. S. and Surya, C., Cryst. Growth Des., 9 (2009) 792.
5. Stach, E. A., Pauzauskie, P. J., Kuykendall, T., Goldberger, J., He, R., Yang, P., Nano Lett., 3 (2003) 867.
6. Zhong, Zhaohui, Qian, Fang, Wang, Deli, and Lieber, Charles M., Nano Lett., 3 (2003) 343.
7. Han, S., Jin, W., Zhang, D., Tang, T., Li, C., Liu, X., Liu, Z., Lei, B., Zhou, C., Chem. Phys. Lett., 389 (2004) 176.
8. Callega, E., Sanchez-Garcia, M.A., Sanchez, F. J., Calle, F., Naranjo, F.B., Munoz, E.. Phys. Rev. B, 62 (2000) 16826.
9. Pacheco-Salazar, D. G., Leite, J. R., Cerdeira, F., Meneses, E. A., Li, S. F., As, D. J., and Lischka, K. Semicond. Sci. Technol., 21 (2006) 846.
10. Iwanaga, T., Suzuki, T., Yagi, S., Motooka, T.. J. Appl. Phys., Vol 98 (2005) 104303.
11. Bertness, K. A., Sanford, N. A., and Davydov, A. V., IEEE J. Select. Top. Quant. Electron., 847858 (2010) 17.
12. Wang, X., Sun, X., Fairchild, M. and Hersee, S. D., Appl. Phys. Lett. 89, (2006) 233115.
13. Hersee, S. D., Sun, X. and Wang, X., Nano Lett., 6 (2006) 1808.
14. Pauzauskie, P. J., Talaga, D., Seo, K., Yang, P. and Labarthet, F. L.. J. Am. Chem. Soc., 127 (2005) 17146.
15. Consonni, V., Knelangen, M., Geelhaar, L., Trampert, A., and Riechert, H., Phys. Rev. B, 81 (2010) 085310.
16. Landre, O., Bougerol, C., Renevier, H. and Daudin, B., Nanotechnology, 20 (2009) 415602.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed