Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T18:49:00.514Z Has data issue: false hasContentIssue false

A Growth Model For Ramified Electrochemical Deposition

Published online by Cambridge University Press:  10 February 2011

Guillermo Marshall
Affiliation:
University of Buenos Aires National Research Council.
Pablo Mocskos
Affiliation:
University of Buenos Aires
Martin Olivella
Affiliation:
University of Buenos Aires
Get access

Abstract

We introduce a macroscopic model for the description of growth pattern formation in ramified electrochemical deposition. The theoretical model is formulated as a 2D time-dependent problem consisting in the Nernst-Planck equations for the concentration of the solute (cations and anions), coupled to a Poisson equation for the electrostatic potential and the Navier-Stokes equations for the solvent, with a moving boundary. A dimensional analysis is performed and a new set of dimensionless numbers governing the flow regime is derived. A 2D discrete version of these equations in a DBM scheme with a random moving boundary constitutes the computational model. We present numerical results which show that our growth model, with a proper variation of the set of dimensionless numbers, gives a reasonable picture of the interplay of the electroconvective, migration and diffusive motion of the ions near the growing tips.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
2. Vicsek, T., Fractal Growth Phenomena 2nd. edn (World Scientific, Singapore, 1992).Google Scholar
3. Stanley, G. and Ostrowsky, N. (eds.) On Growth and Form, NATO ASI Ser. vol.100 (Kluwer, Boston, 1986).Google Scholar
4. Kadanoff, L., J. Stat. Phys. 39, 267 (1985).Google Scholar
5. Matsushita, M., Sano, M., Hayasawa, Y., Honjo, H. and Sawada, Y, Phys. Rev. Lett. 53, 286 (1984).Google Scholar
6. Ben-Jacob, E. and Garik, P., Nature 343, 523 (1990).Google Scholar
7. Argoul, F., Huth, J.,Merzeau, P., Arneodo, A. and Swinney, H. L., Physica D 62, 170 (1993).Google Scholar
8. Newman, J. S., Electrochemical Systems (Prentice Hall, New Jersey, 1973).Google Scholar
9. Rubinstein, I., Electro-Diffusion of Ions (SIAM Studies in Applied Math. Philadelphia, 1990).Google Scholar
10. Bruinsma, R. and Alexander, S., J. Chem. Phys. 92, 3075 (1990).Google Scholar
11. Bazant, M. Z., Phys. Rev. E 52, 1903 (1995).Google Scholar
12. Chazalviel, J. N., Phys. Rev. E 42, 7355 (1990).Google Scholar
13. Fleury, V., Kaufman, J. and Hibbert, B., Phys. Rev. E 48, 3831 (1993).Google Scholar
14. Witten, T. A. and Sander, L. M., Phys. Rev. B 27, 5686 (1983).Google Scholar
15. Meakin, P., Phys. Rev. B. 28, 5221 (1983).Google Scholar
16. Lam, L., Pochy, R. D. and Castillo, V. M., in Nonlinear Structures in Physical Systems, ed. Lam, L. and Morris, H. C. (Springer, New York, 1990).Google Scholar
17. Marshall, G., Comput. Phys. Commun. 56, 51 (1989).Google Scholar
18. Marshall, G., Growth Patterns Driven by a Nonlinear Field, 10th. Int. Conf on Nonlinear Science, Los Alamos, 1990 (unpublished).Google Scholar
19. Marshall, G. and Arguijo, E., Chaos, Solitons and Fractals 5, 531 (1992).Google Scholar
20. Marshall, G., Tagtachian, S. and Lam, L., Chaos, Solitons and Fractals, 6, 325 (1995).Google Scholar
21. Pietronero, L. and Weismann, H. J., J. Stat. Phys. 36, 909 (1984).Google Scholar
22. Marshall, G., Perone, E., Tarela, P. and Mocskos, P., Chaos, Solitons and Fractals 6, 315 (1995).Google Scholar
23. Melrose, J. R., Hibbert, D. B. and Ball, R. C., Phys. Rev. Lett. 65, 3009 (1990).Google Scholar
24. Fleury, V., Chazalviel, J. N., Rosso, M., and Sapoval, B., Phys. Rev. A 44, 6693 (1991).Google Scholar
25. Fleury, V.,Rosso, M. and Chazalviel, J. N., Phys. Rev. A 43, 6908 (1991).Google Scholar
26. Fleury, V., Chazalviel, J. N. and Rosso, M., Phys. Rev. Lett. 68, 2492 (1992).Google Scholar
27. Fleury, V., Chazalviel, J. N. and Rosso, M., Phys. Rev. E 48, 1279 (1993).Google Scholar
28. Trigueros, P. P., Mas, F., Claret, J. and Sagues, F., J. Electroanal. 348, 221 (1993).Google Scholar
29. Barkey, D., J. Electrochem. Soc. 138, 2912 (1991).Google Scholar
30. Kork, R. H., Pritchard, D. C. and Tam, W. Y., Phys. Rev. A 44, 6940 (1991).Google Scholar
31. Wang, M. and Ming, N., Phys. Rev. A 45, 2493 (1992).Google Scholar
32. Kuhn, A. and Argoul, F., Fractals 3, 451 (1993).Google Scholar
33. Livermore, C. and Wong, Po-zen, Phys. Rev. Lett. 72, 3847 (1994).Google Scholar
34. Linehan, K. A. and de Bruyn, J. R., Can. J. Phys. 73, 177 (1995).Google Scholar
35. Otero, D., Marshall, G. and Tagtachian, S., Fractals, World Scientific (in press 1996).Google Scholar
36. Fleury, V., Kaufman, J. and Hibbert, B., Nature 367, 435 (1994).Google Scholar