Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-22T04:38:39.724Z Has data issue: false hasContentIssue false

Growth Mechanisms During Si/Ge Deposition

Published online by Cambridge University Press:  16 February 2011

John E. Crowell
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093–0314
Guangquan Lu
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093–0314
Bob M. J. Ning
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093–0314
Get access

Abstract

The adsorption and decomposition behavior of disilane and digermane are quite similar on the Ge(111) surface. Both precursors are weakly bound at low temperatures, but dissociatively adsorb at temperatures above 150K. Trihydride species are produced and stable at low temperatures, but decompose to di- and monohydride species at slightly higher temperatures. The desorption of hydrogen from the resulting layer is strongly dependent on the Si and Ge composition of the layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., Fresart, E. D., Stork, J. M. C., Sun, J. Y. C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Lett. 11, 171 (1990); S. S. Iyer, G. L. Patton, D. L. Harame, J. M. C. Stork, E. F. Crabbe, and B. S. Meyerson, Thin Solid Films 184, 153 (1990).Google Scholar
2. King, C. A., Hoyt, J. L., and Gibbons, J. F., IEEE Trans. Electronic Devices 36, 2093 (1989); J. L. Hoyt, C. A. King, D. B. Noble, C. M. Gronet, J. F. Gibbons, M. P. Scott, S. S. Laderman, S. J. Rosner, K. Nauka, J. Turner and T. I. Kamins, Thin Solid Films 184, 93 (1990).Google Scholar
3. Pearsall, T.P., CRC Crit. Rev. in Solid State and Mat. Sci. 15, 551 (1989).Google Scholar
4. Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., IEEE Trans. Electron Devices 36, 2043 (1989).Google Scholar
5. Takahashi, Y., Ishi, H., Fujinaga, K., J. Electrochem. Soc. 136, 1826 (1989); Y. Takahashi, Y. Sese, and T. Urisu, Jpn. J. Appl. Phys. 28, 2387 (1989).Google Scholar
6. Harrick Scientific Corp., Ossining, NY.Google Scholar
7. Gates, S. M., Surface Sci. 195, 307 (1988).Google Scholar
8. Durig, J. and Church, J.S., J. Chem. Phys. 73, 4784 (1980).Google Scholar
9. Crowell, J.E. and Lu, G.Q., “Epitaxial Heterostructures”, Mat. Res. Soc. Symp. Proc.198, 533 (1990); G.Q. Lu and J.E. Crowell, “Symposium on Superlattice Structures and Devices”, Proc. Electrochem. Soc. 90–15, 450 (1990).CrossRefGoogle Scholar
10. Crowell, J.E. and Lu, G.Q., J. Electron Spectrosc. and Relat. Phenom., 54/55, 1045 (1990).CrossRefGoogle Scholar
11. Sumev, L. and Tikhov, M., Surface Sci. 138, 40 (1984).Google Scholar
12. Ning, B.M.H. and Crowell, J.E., to be submitted.Google Scholar
13. Ning, B.M.H. and Crowell, J.E., submitted to Appl. Phys. Lett. Google Scholar
14. Meyerson, B.S., Uram, K.J. and LeGoues, F.K., Appl. Phys. Lett. 53, 2555 (1988); K.J. Uram and B.S. Meyerson, Mat. Res. Soc. Symp. Proc. Vol.102, 307 (1988).Google Scholar
15. Garone, P. M., Sturm, J. C., Schwartz, P. V., Schwarz, S. A., and Wilkens, B. J., Appl. Phys. Lett. 56, 1275 (1990).Google Scholar
16. Kamins, T. I. and Meyer, D. J., Appl. Phys. Lett., in press.Google Scholar
17. Liehr, M., Greenlief, C. M., Kasi, S. R., and Offenberg, M., Appl. Phys. Lett.56, 629 (1990).Google Scholar