Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T06:02:38.745Z Has data issue: false hasContentIssue false

The Growth, Characterization and Electronic Device Applications of GaAs/Si

Published online by Cambridge University Press:  28 February 2011

A. S. Jordan
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We review the growth of GaAs on Si by MO-CVD and MBE and discuss the relative merits of these techniques. Major emphasis is placed on the structural and optical characterization of the material that may be indicative of device performance. Typical GaAs layers on Si are free of anti- phase domains and the crystallinity at the surface for a 3-4μm thick deposit approaches that of bulk GaAs, as evidenced by the RBS backscattering yields and Si ion implantation profiles. The major drawbacks of GaAs heteroepitaxy on Si are the very large dislocation densities (106 - 109cm−2), the relatively high unintentional doping concentration (>5 × 1014cm−3 ) that is partly attributable to Si outdiffusion, and the excessive bowing due to thermal expansion coefficient mismatch. While there are growth and processing techniques to overcome bowing or at least its influence, dislocations and low resistivity are hard to remedy. We discuss novel schemes to reduce dislocations (selective area growth, superlattices and thermal cycling) and efforts to improve the electrical properties (doping, optimization of V/III ratio). A variety of electronic devices and circuits have been fabricated using GaAs/Si. We shall present results on MESFETs, HBTs and HFETs processed in our laboratory and elsewhere. It is quite encouraging that HFETs with a transconductance of 220mS/mm are achievable. However, lasers in room temperature CW operation still have a very limited lifetime. Finally, we discuss the implications of GaAs/Si for a broader area of mismatched heteroepitaxy (InP/Si, InP/GaAs, etc.) and speculate on the future prospects for this new materials technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shaw, D. W., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 15.Google Scholar
2. Gale, R. P., Fan, J. C. C., Tsaur, B.-Y., Turner, G. W., and Davis, G. M., IEEE Elec. Dev. Lett., EDL–2, 169 (1981).Google Scholar
3. Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys., 23, L843 (1984).Google Scholar
4. Shichijo, H., Lee, J. W., McLevige, W. V., and Taddiken, A. H., IEEE Elec. Dev. Lett., EDL–8, 121 (1987).Google Scholar
5. Deppe, D. G., Nam, D. W., Holonyak, N. Jr, Hsieh, K. C., Matyi, R. J., Shichijo, H., Epler, J. E., and Chung, H. F., Appl. Phys. Lett., 51, 1271 (1987).Google Scholar
6. Chand, N., Ren, F., and Smith, P. R., Materials Res. Soc. Symp. Proceed., this volume (1989); F. Ren, N. Chand, Y. K. Chen, D. M. Tennant, and D. J. Resnick, to be published.Google Scholar
7. Wilson, M. R., Shen, Y. D., Welch, B. M., Lee, J. W., McCullough, R. E., Salerno, J. P., and Fan, J. C. C., Technical Digest of the IEEE GaAs IC Symp., Nashville, 1988, p. 243.Google Scholar
8. Kroemer, H., in “Heteroepitaxy on Si,” Fan, J. C. C. and Poate, J. M., editors, Materials Res. Soc. Symp. Proceed., Vol. 67, 1986, p. 3.Google Scholar
9. Harris, J. S. Jr, Koch, S. M., and Rosner, S. J., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 3.Google Scholar
10. Fisher, R., Masselink, W. T., Klem, J., Henderson, T., McGlinn, T. C., Klein, M. V., Morkoc, H., Mazur, J. M., and Washburn, J., J. Appl. Phys., 58, 376 (1985).Google Scholar
11. Akiyama, M., Kawarada, Y., Nishi, S., Ueda, T., and Kaminishi, K., in “Heteroepitaxy on Si,” Fan, J. C. C. and Poate, J. M., editors, Materials Res. Soc. Symp. Proceed., Vol. 67, 1986, p. 53.Google Scholar
12. Ishizaka, A., Nakagawa, K., and Shiraki, Y., in “Collected Papers, Second Intl. Symp. on MBE and Related Clean Surface Techniques,” Tokyo, 1982, p. 182.Google Scholar
13. Chand, N., Fischer, R., Sergent, A. M., Lang, D. V., and Cho, A. Y., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 233.Google Scholar
14. Aheam, J. S. and Uppal, P., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and B.-Y. Tsaur, editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 167.Google Scholar
15. Lum, R. M., Klingert, J. K., Davidson, B. A., and Lamont, M. G., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 125.Google Scholar
16. Lee, J. W., Salerno, J. P., Gale, R. P., and Fan, J. C. C., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 33.Google Scholar
17. Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L. P., J. Appl. Phys., 60, 1640 (1986).CrossRefGoogle Scholar
18. Ishida, K., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 133.Google Scholar
19. Pearton, S. J., Abernathy, C. R., Caruso, R., Vernon, S. M., Short, K. T., Brown, J. M., Chu, S. N. G., Stavola, M., and Haven, V. E., J. Appl. Phys., 63, 775 (1988).Google Scholar
20. Chu, S. N. G., Nakahara, S., Pearton, S. J., Boone, T., and Vernon, S. M., J. Appl. Phys., 64, 2981 (1988).CrossRefGoogle Scholar
21. Dupuis, R. D., Bean, J. C., Brown, J. M., Macrander, A. T., Miller, R. C., and Hopkins, L. C., J. Electronic Materials, 16, 69 (1987).Google Scholar
22. Fukuda, Y., Kadota, Y., and Ohmachi, Y., Jpn. J. Appl. Phys., 27, 485 (1988).Google Scholar
23. Soga, T., Imori, T., Ogawa, M., Jimbo, T., and Umeno, M., in “GaAs and Related Compounds, Heraklion (Greece), 1987,Christou, A. and Rupprecht, H. S., editors, Institute of Physics Conf. Series No. 91, Institute of Physics-Bristol, Philadelphia, 1988, p. 335.Google Scholar
24. Soga, T., Imori, T., and Umeno, M., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 69.CrossRefGoogle Scholar
25. Jordan, A. S. and Caruso, R., IEEE Trans. on Components, Hybrids, and Manufacturing Technology, 11, 464 (1988).CrossRefGoogle Scholar
26. Soga, T., Kohama, Y., Uchida, K., Tajma, M., Jimbo, T., and Umeno, M., J. Crystal Growth, 93, 499 (1988).Google Scholar
27. Shichijo, H. and Lee, J. W., in “Heteroepitaxy on Si,” Fan, J. C. C. and Poate, J. M., editors, Materials Res. Soc. Symp. Proceed., Vol. 67, 1986, p. 173.Google Scholar
28. Shastry, S. K., Zemon, S., and Oren, M., J. Crystal Growth, 77, 503 (1986).Google Scholar
29. Pearton, S. J., Malm, D. L., Heimbrook, L. A., Kovalchik, J., Abernathy, C. R., and Caruso, R., Appl. Phys. Lett., 51, 682 (1987).Google Scholar
30. Freundlich, A., Leycuras, A., Grenet, J. C., and Grattepain, C., Appl. Phys. Lett., 53, 2635 (1988).CrossRefGoogle Scholar
31. Kawarada, Y., Akiyama, M., and Kaminski, K., in “Semi-insulating III-V Materials, Hakone, 1986,” edited by Kukimoto, H. and Miyazawa, S., OHM-North Holland, 1986, p. 509.Google Scholar
32. Hobson, W. S., Pearton, S. J., Swaminathan, V., Jordan, A. S., Kao, Y. J., Haegel, N. M., and Kanber, H., Materials, Res. Soc. Symp. Proceed., this volume (1989).Google Scholar
33. Hobson, W. S., Pearton, S. J., and Jordan, A. S., unpublished work.Google Scholar
34. Pearton, S. J., Lee, K. M., Ren, F., Scarpelli, V. J., and Haegel, N. M., unpublished work.Google Scholar
35. Lum, R. M., private communication.Google Scholar
36. Turner, G. W., Diadiuk, V., Le, H. Q., Choi, H. K., Metze, M., and Tsaur, B.-Y., in”Heteroepitaxy on Si,” Fan, J. C. C. and Poate, J. M., editors, Materials Res. Soc. Symp. Proceed., Vol. 67, 1986, p. 181.Google Scholar
37. Chand, N., Ziel, J. P. van der, Weiner, J. S., Sergent, A. M., and Cho, A. Y., Appl. Phys. Lett., 53, 225 (1988).Google Scholar
38. Jordan, A. S., Neida, A. R. von, and Caruso, R., J. Crystal Growth, 76, 243 (1986).CrossRefGoogle Scholar
39. Hirayama, M., Togashi, M., Kato, N., Suzuki, M., Matsuoka, Y., and Kawasaki, Y., IEEE Trans. Elec. Dev., ED–33, 104 (1986).CrossRefGoogle Scholar
40. Otsuka, N., Choi, C., Kolodziejski, L. A., Gunshor, R. L., Fischer, R., Peng, C. K., Morkoc, H., Nakamura, Y., and Nagakura, S., J. Vac. Sci. Technol., B4, 896 (1986).Google Scholar
41. Kroemer, H., Liu, T. Y., and Petroff, P. M., J. Crystal Growth, 95, 96 (1989).Google Scholar
42. Macrander, A. T., Ann. Rev. Mater. Sci., 18, 283 (1988).CrossRefGoogle Scholar
43. Macrander, A. T., Bonner, W. A., and Monberg, E. M., Materials Lett., 4, 181 (1986).Google Scholar
44. Ishida, K., Akiyama, M., and Nishi, S., Jpn. J. Appl. Phys., 26, L163 (1987).Google Scholar
45. Vernon, S. M., Pearton, S. J., Gibson, J. M., Caruso, R., Abernathy, C. R., Short, K. T., Stavola, M., Maven, V. E., and Jacobson, D. C., in “Heteroepitaxy on Si II,” Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 187.Google Scholar
46. Stirland, D. J., Appl. Phys. Lett., 53, 2432 (1988).Google Scholar
47. Sheldon, P., Jones, K. M., Hayes, R. E., Tsaur, B.-Y., and Fan, J. C. C., Appl. Phys. Lett., 45, 274 (1984).Google Scholar
48. Yacobi, B. G., Jagganath, C., Zemon, S., and Sheldon, P., Appl. Phys. Lett., 52, 555 (1988).Google Scholar
49. Lee, H. P., Wang, S., Huang, Y. H., and Yu, P., Appl. Phys. Lett., 52, 215 (1988).Google Scholar
50. Matyi, R. J., Shichijo, H., Moore, T. M., and Tsai, H.-L., Appl. Phys. Lett., 51, 18 (1987).CrossRefGoogle Scholar
51. El-Masry, N., Hamaguchi, N., Tam, J. C. L., Karam, N., Humphreys, T. P., Moore, D., and Bedair, S. M., in “Heteroepitaxy on Si II,Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y., editors, Materials Res. Soc. Symp. Proceed., Vol. 91, 1987, p. 99.Google Scholar
52. Hayafuji, N., Ochi, S., Miyashita, M., Tsugami, M., Murotani, T., and Kawagishi, A., J. Crystal Growth, 93, 494 (1988).Google Scholar
53. Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y., and Sugo, M., Appl. Phys. Lett., 53, 2293 (1988).Google Scholar
54. Yamaguchi, M., Nishioka, T., and Sugo, M., Appl. Phys. Lett., 54, 24 (1989).Google Scholar
55. Aksun, M. I., Morkoc, H., Lester, L. F., Duh, K. M. G., Smith, P. M., Longerbone, M., and Erickson, L. P., Appl. Phys. Lett., 49, 1654 (1986).Google Scholar
56. Eron, M., Taylor, G., Menna, R., Narayan, S. Y., and Klatskin, J., IEEE Elec. Dev. Lett., EDL–8, 350 (1987).CrossRefGoogle Scholar
57. Ren, F., Chand, N., Garbinski, P., Pearton, S. J., Wu, C. S., Urbanek, L. D., Fullowan, T., Shah, N. J., and Feuer, M. D., Electronic Lett., 24, 1037 (1988).CrossRefGoogle Scholar
58. Fischer, R., Kopp, W., Gedymin, J. S., and Morkoc, H., IEEE Trans. Elec. Dev., ED–33, 1407 (1986).Google Scholar
59. Tran, L. T., Lee, J. W., Shichijo, H., and Yuan, H.-T., IEEE Elec. Dev. Lett., EDL–8, 50 (1987).Google Scholar
60. Won, T., Litton, C. W., Morkoc, H., and Yariv, A., IEEE Elec. Dev. Lett., EDL–9, 405 (1988).Google Scholar
61. Ma, T., Ueda, D., Lee, W.-S., Adkisson, J., and Harris, J. S. Jr, IEEE Elec. Dev. Lett., EDL–9, 657 (1988).Google Scholar
62. Deppe, D. G., Hall, D. C., Holonyak, N. Jr, Matyi, R. J., Shichijo, H., and Epler, J. E., Appl. Phys. Lett., 53. 874 (1988).Google Scholar
63. Choi, H. K., Mattia, J. P., Turner, G. W., and Tsaur, B.-Y., IEEE Elec. Dev. Lett., EDL–9, 512 (1988).Google Scholar
64. Shichijo, H., Taddiken, A. H., and Matyi, R. J., Technical Digest of the IEEE GaAs IC Symp., Nashville, 1988, p. 239.Google Scholar
65. Wuu, D. S., Tung, H. H., Horng, R. H., and Lee, M. K., J. Appl. Phys., 65, 1213 (1989).Google Scholar
66. Crumbaker, T. E., Lee, H. Y., Hafich, M. J., and Robinson, G. Y., Appl. Phys. Lett., 54, 140 (1989).Google Scholar
67. Razeghi, M., Defour, M., Omnes, F., Nagle, J., Maurel, P., Acher, O., Huber, A., and Mijuin, D., Materials Res. Soc. Symp. Proceed., Vol. 126, 1988, p. 143.Google Scholar
68. Razeghi, M., Defour, M., Omnes, F., Maurel, P., and Chazelas, J., Appl. Phys. Lett., 53, 725 (1988).CrossRefGoogle Scholar
69. Razeghi, M., Blondeau, A., Defour, M., Omnes, F., and Maurel, P., Appl. Phys. Lett., 53, 854 (1988).Google Scholar
70. Razeghi, M., Defour, M., Blondeau, R., Omnes, F., Maurel, P., Acher, O., Brillouet, F., Fan, J. C. C. and Salerno, J., Appl. Phys. Lett., 52, 2389 (1988).Google Scholar
71. Ren, F., Hobson, W. S., Pearton, S. J., Oster, L. J., and Smith, P. R., to be published.Google Scholar
72. Horikawa, H., Ogawa, Y., Kawai, Y., and Sakuta, M., Appl. Phys. Lett., 53, 397 (1988).Google Scholar
73. Wang, G.-W., Chen, Y.-K., Schaft, W. J., and Eastman, L. F., IEEE Trans. Elec. Dev. ED–35, 818 (1988).Google Scholar