Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T07:21:23.970Z Has data issue: false hasContentIssue false

Growth and Properties of III-V Nitride Films, Quantum Well Structures and Integrated Heterostructure Devices

Published online by Cambridge University Press:  21 February 2011

J.F. Schetzina*
Affiliation:
Department of Physics, North Carolina State University, Raleigh N.C., 27695-8202
Get access

Abstract

Growth of lll-V nitrides by molecular beam epitaxy (MBE) is being studied at NCSU using an rf nitrogen plasma source. GaN/SiC substrates consisting of ∼3 μm thick GaN buffer layers grown on 6H-SiC wafers by MOVPE at Cree Research, Inc. are being used as substrates in the MBE film growth experiments. The MBE-grown GaN films exhibit excellent structural and optical properties — comparable to the best GaN films grown by MOVPE—as determined from photoluminescence, x-ray diffraction, and vertical-cross-section TEM micrographs. Mg and Si have been used as dopants for p-type and n-type layers, respectively. AlxGa1−xN films (x∼0.06-0.08) and AlxGa1−xN/GaN multi-quantum-well structures have been grown which display good optical properties. Light-emitting diodes (LEDs) based on double-heterostructures of AlxGa1−xN/GaN which emit violet light at ∼400 nm have also been demonstrated. Key issues that must be addressed before lll-V nitride laser diodes can be demonstrated and commercialized are discussed. New integrated heterostructures are proposed for the development of a variety of vertical-transport devices such as light-emitting diodes, laser diodes, photocathodes, electron emitters based on the negative-electron-affinity of AIN, and certain transistor structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hughes, W. C., Rowland, W. H. Jr., Johnson, M. A. L., Fujita, Shizuo, Cook, J. W. Jr., Schetzina, J. F., Ren, J., and Edmond, J. A., J. Vac. Sci. Technol. B 13, 1571 (1995).Google Scholar
2 Dingle, R., Sell, D. D., Stokowski, S. E., Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
3 Edwards, N.V., Weeks, T.W. Jr., Bremser, M.D., Davis, R.F., and Aspnes, D.E., to be published.Google Scholar
4 Krishnankutty, S., Kolbas, R. M., Khan, M. A., Kuznia, J. N., Van Hove, J. M., and Olson, D. T., J. Electron. Mater. 21, 609 (1992).Google Scholar
5 Benjamin, M.C., Wang, C., Davis, R.F., and Nemanich, R.J., Appl. Phys. Lett. 64, 3288 (1994).Google Scholar
6 Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A., and Morcoç, H., App. Phys. Lett. 65,610 (1994).Google Scholar
7 Baur, G., Maier, K., Kunzer, M., Kaufmann, U., and Schneider, J., Appl. Phys. Lett. 65, 2211 (1994).Google Scholar
8 Segal, B., Abanesi, E.A., Kim, K., and Lambrecht, W.R. L., Nitride Workshop, St. Louis, MO, (1994).Google Scholar
9 Yang, Z. and Schetzina, J.F., J. Electron. Mater. 23, 1071 (1994).Google Scholar
10 Ren, J., Eason, D.B., Churchill, L.E., Yu, Z. Boney, C., Cook, J.W. Jr., Schetzina, J.F., El-Masry, N.A., J. Cryst. Growth 138, 455 (1994).Google Scholar
11 Lansari, Y., Ren, J., Sneed, B., Bowers, K.A., Cook, J.W. Jr., and Schetzina, J.F., App. Phys. Lett. 61, 2554 (1992).Google Scholar
12 Fan, Y., Han, J., He, L., Saraie, J., Hagerott, M., Jeon, H., Nurmikko, N.V., Hua, G.C., Otsuka, N., Appl. Phys. Lett. 61, 3160 (1992).Google Scholar
13 Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z.F., Allen, LH., and Morkoç, H., Appl. Phys. Lett. 64, 1003, (1994).Google Scholar