Skip to main content Accessibility help
×
Home

Growth and Fabrication of 2 inch Free-standing GaN Substrates via the Boule Growth Method

  • Drew Hanser (a1), Lianghong Liu (a1), Edward A. Preble (a1), Darin Thomas (a1) and Mark Williams (a1)...

Abstract

High quality, single crystal GaN substrates have been demonstrated using a boule growth process. Here we report on the crystalline boules that were formed during the growth process and their material characterization. Using hydride vapor phase epitaxy process, GaN crystals were grown at growth rates greater than 200 μm/hr. Boules greater than 3 mm thick were grown and processed into free-standing substrates. Rocking curve measurements using high-resolution X-ray diffraction were performed on the substrates with FWHM values of 92 and 146 arcsec for the (002) and (102) reflections, respectively. Atomic force microscope images, etch pit studies, and transmission electron micrographs of the GaN material show high quality material quality with a dislocation density in the range of 5×106 to 1×107 cm-2.

Copyright

References

Hide All
1 Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).
2 Porowski, S., MRS Internet J. Nitride Semicond. Res. 4S1, G1.3 (1999).
3 Kelley, M. K., Vaudo, R. P., Phanse, V. M., Gorgens, L., Ambacher, O., and Stutzmann, M., Jpn. J. Appl. Phys., Part 2 38, L217 (1999).
4 Freitas, J. A. Jr, Braga, G. C. B., Moore, W. J., Tischler, J. G., Culbertson, J. C., Fatemi, M., Park, S. S., Lee, S. K., and Park, Y., J. Cryst. Growth 231, 322 (2001).
5 Motoki, K. et al., J. Cryst. Growth 237–239, 912 (2002).
6 Rosner, S.J., Carr, E.C., Ludowise, M.J., Girolami, G., Erikson, H.I., Appl. Phys. Lett. 70 (1997) 420.
7 Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L.T., Sakai, S., Jpn. J. Appl. Phys. 37 (1998) L398.
I Kato, Y., Kitamura, S., Hiramatsu, K., Sawaki, N., J. Cryst. Growth 144, 133 (1994).
9 Nam, O., Bremser, M. D., Ward, B. L., Nemanich, R. J., Davis, R. F., Mater. Res. Soc. Symp. Proc. 449, 107 (1997).
10 Kapolnek, D., Keller, S., Vetury, R., Underwood, R.D., Kozodoy, P., DenBaars, S.P., Mishra, U.K., Appl. Phys. Lett. 71, 12041206 (1997).
II Zheleva, T., Smith, S., Thomson, D., Linthicum, K., Gerhke, T., Rajagopal, P., Davis, R. F., J. Electron. Mater. 28, L5– L8 (1999).
12 Mathis, S.K., Romanov, A.E., Chen, L.F., Beltz, G.E., Pompe, W., and Speck, J.S., Phys. Stat. Sol. (a) 179 (2000) 125.
13 Rosner, S.J., Carr, E.C., Ludowise, M.J., Girolami, G., Erikson, H.I., Appl. Phys. Lett. 70 (1997) 420.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed