Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-25T21:29:07.287Z Has data issue: false hasContentIssue false

Growth and Decay of Germanium Islands on Silicon Studied by High Temperature Stm

Published online by Cambridge University Press:  10 February 2011

M. Kästner
Affiliation:
Paul Drude Institute for Solid State Electronics, Hausvogteiplatz 5-7, 10 117 Berlin, Germany.
B. Voigtländer
Affiliation:
Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jülich, 52425 Jülich, Germany.
Get access

Abstract

We use a scanning tunneling microscope (STM) capable of imaging the growing layer at high temperature during molecular beam epitaxy (MBE) to study the epitaxial growth of Germanium on Silicon and the decay of Ge islands. The periodicity of the (2×N) reconstruction of two-dimensional Ge layers on Si(001) is measured as function of the Ge coverage. Strain energy drives the formation of the (2×N) reconstruction and Si/Ge intermixing. A comparison to total energy calculations predicting the periodicity of the (2×N) reconstruction is used to estimate the amount of Si-Ge intermixing near the surface. The evolution of the size and shape of individual “hut clusters” is measured and explained by kinetically self-limiting growth. The relaxation of kinetically a determined morphology towards equilibrium is followed for a Ge layer on Si(111). Strained two-dimensional as well as partially relaxed three-dimensional islands dissolve and are soaked up by larger three-dimensional islands which are dislocated and therefore fully relaxed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Voigtänder, B. and Zinner, A., Surf. Sci. Lett. 292, 775 (1993).Google Scholar
[2]Voigtänder, B. and Weber, T., Phys. Rev. B 54, 7709 (1996).Google Scholar
[3]Köhler, U., Jusko, O., Mifller, B., Horn-von Hoegen, M., and Pook, M., Ultramicroscopy 42–44, 832 (1992).Google Scholar
[4]Iwakaki, F., Tomitori, M., and Nishikawa, O., Ultramicroscopy 42–44, 902 (1992).Google Scholar
[5]Wu, F. and Lagally, M., Phys. Rev. Lett. 75, 2534 (1995).Google Scholar
[6]Butz, R. and Kampers, S., Appl. Phys. Lett. 61, 1307 (1992).Google Scholar
[7]Tromp, R., Phys. Rev. B 47, 7125 (1993).Google Scholar
[8]Goldfarb, I., Owen, J., Hayden, P., Bowler, D., Miki, K., and Briggs, G., Surf. Sci. 394, 105 (1997).Google Scholar
[9]Liu, F. and Lagally, M., Phys. Rev. Lett. 76, 3156 (1996).Google Scholar
[10]Tersoff, J., Phys. Rev. B 45, 8833 (1992).Google Scholar
[11]Mo, Y.W., Savage, D.E., Swartzentruber, B., and Lagally, M.G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
[12]Kästner, M. and Voigtländer, B., Phys. Rev. Lett. 82, 2745 (1999).Google Scholar
[13]Tersoff, J. and LeGouess, F., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
[14]Jesson, D., Chen, G., Chen, K., and Pennycook, S., Phys. Rev. Lett. 80, 5156 (1998).Google Scholar
[15]Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar
[16]Shchukin, V., Ledentsov, N., Kop'ev, P., and Bimberg, D., Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
[17]Shchukin, V., Borokov, A., Ledentsov, N., and Bimberg, D., Phys. Rev. B 51, 10104 (1995).Google Scholar
[18]Shchukin, V., 1997, private communication.Google Scholar
[19]Latyshev, A., Aseev, A., Krasilnikov, A., and Stenin, S., Surf. Sci. 213, 157 (1989).Google Scholar
[20]Theiss, S.K., Chen, D.M., and Golovchenko, J.A., Appi. Phys. Lett. 66, 448 (1995).Google Scholar
[21]Theis, W., Bartelt, N.C., and Tromp, R.M., Phys. Rev. Lett. 75, 3328 (1995).Google Scholar
[22]Bartelt, N.C., Theis, W., and Tromp, R.M., Phys. Rev. B 54, 11741 (1996).Google Scholar