Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T15:11:35.865Z Has data issue: false hasContentIssue false

Growth and Characterization Of Extremely Abrupt InGaAs

Published online by Cambridge University Press:  21 February 2011

Quantum Wells
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
C. J. Pinzone
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
E. K. Byrne
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
S. K. Sputz
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
R. People
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
J. Vandenberg
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, N.J. 07974
Get access

Abstract

Heterostructures of InGaAs/InP and InGaAs/InGaAsP were grown by low pressure metalorganic chemical vapor deposition (LP-MOCVD) in an EMCORE GS3200 system. Highly abrupt interfaces were attained with PL line widths for the InGaAs/InP system comparable to the best values reported in the literature for any crystal growth technique, MOCVD, MBE or CBE. These structures were characterized with low temperature (10K) photoluminescence (PL), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HRXD).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dupuis, R. D., Neff, J. G., Pinzone, C. J., Growth, J. Crys., 1992,Vol. 124, pp.558564 Google Scholar
2 P Kuo, C., Fry, K. L., and Stringfellow, G. B., Appl. Phys. Lett, 1985 47 (8) pp.855857 Google Scholar
3 Sherwin, M. E., Nichols, D. T., Munns, G. O., Bhattacharya, P. K., and Haddad, G. I., J. Electr. Mat. 1991, 20 (12) pp. 979982 Google Scholar
4 Temkin, H., Panish, M. B., Petroff, P. M., Hamm, R. A., Vandenberg, J. M., and Sumski, S., Appl. Phys. Lett. 1984,47 (4) pp. 394396 Google Scholar
5 Tsang, W. T. and Schubert, E. F., Appl. Phys. Lett. 1986 Google Scholar
6 Welch, D. F., Wicks, G. W., and Eastman, L. F., Appl. Phys. Lett. 46 (10) pp. 991993 (1985)Google Scholar
7 Antolini, A., Bradley, P. J., Cacciatore, C., Campi, D., Gastaldi, L., Genova, F., M, lori, Lamberti, C., Papuzza, C., and Rigo, C., J. Elect. Mat., 21 (2) (1992)Google Scholar
9 Marsh, J. H., Roberts, J. S., and Claxton, P. A., Appl. Phys. Lett. 46 (12) pp. 11611163 (1985)Google Scholar
8 McKee, M.A., Norris, P.E.. Stall, R. A., Tompa, G. S., Chern, C. S., Noh, D., Kang, S. S., and Jasinski, T. J., J. Crys. Growth 1991, Vol 107, Iss. 1-4, pp. 445451 Google Scholar
9 Chu, S.N.G. and Sheng, T.T., J. Electrochem. Soc. 131, p. 2663 (1984)Google Scholar
10 Razeghi, M., and Hirtz, J. P., Appl. Phys. Lett. 43 (6) pp. 585587 (1983)Google Scholar
11 Sherwin, M. E., Terry, F. L., Munns, G. O., Herman, J. S., Woelk, E. G., and Haddad, G. I., J. Elect. Mat. 21 (3) pp. 269275 Google Scholar