Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T09:12:35.500Z Has data issue: false hasContentIssue false

Growth and Capacitance Spectroscopy of Self Assembled Quantum Dots

Published online by Cambridge University Press:  10 February 2011

G. Medeiros-Ribeiro
Affiliation:
Materials Department, University of California, Santa Barbara 93106; Quest, University of California, Santa Barbara 9310, medeiros@engrhub.ucsb.edu
K. H. Schmidt
Affiliation:
Materials Department, University of California, Santa Barbara 93106; Quest, University of California, Santa Barbara 9310, medeiros@engrhub.ucsb.edu
D. Leonard
Affiliation:
Materials Department, University of California, Santa Barbara 93106; Quest, University of California, Santa Barbara 9310, medeiros@engrhub.ucsb.edu
Y. M. Cheng
Affiliation:
Materials Department, University of California, Santa Barbara 93106; Quest, University of California, Santa Barbara 9310, medeiros@engrhub.ucsb.edu
P. M. Petroff
Affiliation:
Materials Department, University of California, Santa Barbara 93106; Quest, University of California, Santa Barbara 9310, medeiros@engrhub.ucsb.edu
Get access

Abstract

The growth of InAs on GaAs self assembled quantum dots and their electronic properties is studied. The limit for coherent island growth is calculated with a simple model and compared to the experimentally observed values. Cross section transmission electron micrography and atomic force micrography are used to investigate this limit. The electronic properties studies involved the use of capacitance spectroscopy to map out the density of states in these structures as well as to probe the temperature dependence of the Coulomb Blockade effect in this system. It was found that Coulomb Blockade could be observed at temperatures in excess of 77K, representing an attractive approach for single electronics operating at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guha, S., Maduhkar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
2. Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., and Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
3. Leonard, D., Krishnamurthy, M., Fafard, S., Merz, J.L., and Petroff, P.M., J. Vac. Sci. Technol. B 12, 1063 (1994).Google Scholar
4. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J.P., and Petroff, P.M., Phys. Rev. Lett. 73, 2252 (1994).Google Scholar
5. Fafard, S., Leon, R., Leonard, D., Merz, J.L., and Petroff, P.M., Phys. Rev. B 50, 8086 (1994).Google Scholar
6. Marzin, J.Y., Gerard, J.M., Izrael, A., Barrier, D., and Bastard, G., Phys. Rev. Lett. 73, 716 (1994)Google Scholar
7. Leonard, D., Pond, K., and Petroff, P.M., Phys. Rev. B, 50, 11687 (1994).Google Scholar
8. Medeiros-Ribeiro, G., Leonard, D., and Petroff, P.M., Appl. Phys. Lett. 66, 1767 (1994).Google Scholar
9. Jesser, W.A. and Kuhlmann-Wilsdorf, D., Phys. Stat. Sol. 19, 95 (1967).Google Scholar
10. Drucker, J., Phys. Rev. B 48, 18203 (1993).Google Scholar
11. Schmidt, K.H., Medeiros-Ribeiro, G., Oestreich, M., Petroff, P.M., unpublished.Google Scholar
12. Devoret, M.H. and Grabert, H. in Single Charge Tunneling- Coulomb Blockade Phenomena in Nanostrucurs edited by Devoret, M.H. and Grabert, H. (NATO ASI Series, series B vol. 294)Google Scholar