Skip to main content Accessibility help
×
Home

Graphyne nanotubes: New Families of Carbon Nanotubes

  • Vitor R. Coluci (a1) (a2), Scheila F. Braga (a1), Sergio B. Legoas (a1), Douglas S. Galvão (a1) and Ray H. Baughman (a2)...

Abstract

Fundamentally new families of carbon single walled nanotubes are proposed. These nanotubes, called graphynes, result from the elongation of covalent interconnections of graphite-based nanotubes by the introduction of yne groups. Similarly to ordinary nanotubes, armchair, zig-zag, and chiral graphyne nanotubes are possible. We present here results for the electronic properties of graphyne based tubes obtained from tight-binding and ab initio density functional methods.

Copyright

References

Hide All
1. Iijima, S., Nature (London) 354, 56 (1991).
2. Sinnott, S. B. and Andrews, R., Crit. Rev. Sol. St. Mat. Sci. 26, 145 (2001), and references therein.
3. Rinzler, A. G. et al., Science 269, 1550 (1995).
4. Tans, S. J. et al., Nature 386, 474 (1997).
5. Kociak, M. et al., Phys. Rev. Lett. 86, 2416 (2001).
6. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., Phys. Rev. Lett. 87, 215502 (2001).
7. Baughman, R. H., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).
8. Narita, N., Nagai, S., Suzuki, S., and Nakao, K., Phys. Rev. B 58, 11009 (1998).
9. Narita, N., Nagai, S., Suzuki, S., and Nakao, K., Phys. Rev. B 62, 11146 (2000).
10. Kroto, H. W. and Walton, D. R. M., in “The Fullerenes, New Horizons for the Chemistry, Physics and Astrophysics of Carbon”, ed. Kroto, H. W. and Walton, D. R. M. (Cambridge University Press, 1993), pp. 103112.
11. Hamada, N., Sawada, S.-I. and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).
12. Ordejón, P., Artacho, E., and Soler, J. M., Phys. Rev. B 53, R10441 (1996). For more information about the Siesta package, access the Web page: http://www.uam.es/siesta.
13. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
14. Delley, B., J. Chem. Phys. 92, 508 (1990); 113, 7756 (2000). DMol3 is available from Accelrys, Inc. as part of the Cerius2 program suite. http://www.accelrys.com.
15. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 46, 1804 (1992).
16. Wallace, P. R., Phys. Rev. 71, 622 (1947).
17. Hoffman, R., J. Chem. Phys. 39, 1397 (1963).
18. Clementi, E. and Raimondi, D. L., J. Chem. Phys. 38, 2686 (1963).
19. Sonoda, M. et. al., Org. Lett. 3, 2419 (2001).
20. Srinivasan, M. et. al., Org. Lett. 2, 3849 (2000).
21. Wan, W. Brad. and Haley, M. M., J. Org. Chem. 66, 3893 (2001)
22. Zhou, Y. and Feng, S., Sol. St. Commun. 122, 307 (2002).
23. Rana, D. and Gangopadhyay, G., Chem. Phy. Lett. 334, 314 (2001).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed