Skip to main content Accessibility help
×
Home

Graphene for Magnetoresistive Junctions

  • J. Inoue (a1), T. Hiraiwa (a1), R. Sato (a1), A. Yamamura (a1), S. Honda (a2) and H. Itoh (a3)...

Abstract

Influence of the linear energy-momentum relationship in graphene on conductance and magnetoresistance (MR) in ferromagnetic metal (FM)/graphene/FM lateral junctions is studied in a numerical simulation formulated using the Kubo formula and recursive Green’s function method in a tight-binding model. It is shown that the contribution of electron tunneling through graphene should be considered in the electronic transport in metal/graphene/metal junctions, and that the Dirac point (DP) is effectively shifted by the band mixing between graphene and metal electrodes. It is shown that MR appears due to spin-dependent shift of DP or spin-dependent change in the electronic states at DPs. It is shown that the MR ratio caused by the latter mechanism can be very high when certain transition metal alloys are used for electrodes. These results do not essentially depend on the shape of the junction structure. However, to obtain high MR ratios, the effects of roughness should be small.

Copyright

References

Hide All
1. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B., and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986).
2. Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienna, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).
3. Miyazaki, T. and Tezuka, N., J. Magn. Magn. Mater. 139, L231 (1995).
4. Moodera, J. S., Kinder, L. R., Wong, T. M., and Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).
5. Inoue, J., Oguri, A., and Maekawa, S., J. Phys. Soc. Jpn. 60, 376 (1991).
6. MacLaren, J. M., Zhang, X.-G., Butler, W. H., and Wang, X., Phys. Rev. B 59, 5470 (1999).
7. , J. M, and Umerski, A., Phys. Rev. B 60, 1117 (1999).
8. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., nature 438, 197 (2005).
9. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).
10. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T., and van Wees, B. J., nature 448, 571 (2007)
11. Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F., and Blake, P., IEEE Trans. Magn. 42, 2694 (2006).
12. Nishioka, M. and Goldman, A. M., Appl. Phys. Lett. 90, 252505 (2007).
13. Ohishi, M., Shiraishi, M., Nouchi, R., Nozaki, T., Shinjo, T., and Suzuki, Y., Jpn. J. Appl. Phys. 46 L605 (2007).
14. Yamamura, A., Honda, S., Inoue, J., and Itoh, J., J. Magn. Soc. Jpn. 34, 34 (2010).
15. Honda, S., Yamamura, A., Hiraiwa, T., Sato, R., Inoue, J., and Itoh, H., Phys. Rev. B 82, 033402 (2010).
16. Harrison, W., Electronic structure and the properties of solids, W. H. Freeman and Company (1980).
17. Papaconstantpoulos, D. A., Handbook of the band structure of elemental solids (Plenum Press, New York, 1986).
18. Itoh, H. and Inoue, J., J. Magn. Soc. Jpn. 30, 1 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed