Skip to main content Accessibility help

Grain Size Control by Means of Solid Phase Crystallization of Amorphous Silicon

  • Jordi Farjas (a1), Pere Roura (a2) and Pere Roca i Cabarrocas (a3)


The grain size of thermally crystallized a-Si films is controlled by the nucleation, rN, and growth, rG, rates according to the standard Avrami's theory. Despite this evidence, most papers devoted to improve the crystallized grain size analyze their results with a qualitative reference to this theory. In this paper, we will show that one can identify the standard set of rN and rG values for a-Si and that experiments show that deviations from this standard values always result in a smaller grain size. It is also shown that one cannot expect any substantial improvement with non-conventional heat treatments. Finally, it is argued that a larger grain size is expected from a-Si films containing, in their as-grown state, a controlled density of embedded nanocrystals.



Hide All
1 Spinella, C., Lombardo, S. and Priolo, F., J. Appl. Phys. 84, 5383 (1998).
2 Hegedus, S., Prog. Photovol. Res. & Appl. 14, 393 (2006).
3 Green, M.A., Solar Energy 74, 181 (2003)
4 Nelson, J., The physics of solar cells, (Imperial College Press, London, 2003).
5 Iverson, R. B. and Reif, R., J. Appl. Phys. 62, 1675 (1987).
6 Masaki, Y., LeComber, P. G. and Fitzgerald, A. G., J. Appl. Phys. 74, 129 (1993).
7 Nakazawa, K. and Tanaka, K., J. Appl. Phys. 68, 1029 (1990).
8 Pangal, K., Sturm, J. C., Wagner, S. and Büyüklimanli, T. H., J. Appl. Phys. 85, 1900 (1999).
9 Young, D. L., Stradins, P., Xu, Y., Gedvilas, L., Reedy, B., Mahan, A. H., Branz, H. M., Wang, Q., and Williamson, D. L., Appl. Phys. Lett. 89, 161910 (2006).
10 Kolmogorov, A. N., Izv. Akad. auk. SSSR Ser.Fiz. 1, 355 (1937).
11 Farjas, J., Roura, P., Acta Mater. 54, 5573 (2006).
12 Farjas, J., Rath, Chandana, Roura, P. and Cabarrocas, P. Rocai, Appl. Surf. Sci. 238, 165 (2004).
13 Farjas, J. and Roura, P., Phys. Rev. B. 75 (scheduled issue: 01 May 2007).
14 Hatalis, M. K. and Greve, D. W., J. Appl. Phys. 63, 2260 (1988).
15 Ryu, M.-K., Hwang, S.-M., Kim, T.-H., Kim, K.-B., Min, S.H., Appl. Phys. Lett. 71, 3063 (1997).
16 Bo, X.-Z., Yao, N. and Sturm, J. C., J. Appl. Phys. 91, 2910 (2002).
17 Kumonia, H. and Yonehara, T., J. Appl. Phys. 75, 2884 (1994).
18 Yamauchi, N. and Reif, R., J.Appl.Phys. 75, 3235 (1994).
19 Kim, H.-Y., Choi, J.-B. and Lee, J.-Y., J. Vac. Sci. Technol. A 17, 3240 (1999).
20 Ouwens, C. D. and Heijligers, H., Appl. Phys. Lett. 26, 569 (1975).
21 Farjas, J. and Roura, P., Acta Mater (submitted).
22 Fan, Ch.-L., Chen, M.-Ch. and Chang, Y., J. Electrochem. Soc. 150, H178 (2003).
23 Chaabane, N., Suendo, V., Vach, H., Rocai-Cabarrocas, P., Appl. Phys. Lett. 88, 203111 (2006).


Related content

Powered by UNSILO

Grain Size Control by Means of Solid Phase Crystallization of Amorphous Silicon

  • Jordi Farjas (a1), Pere Roura (a2) and Pere Roca i Cabarrocas (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.