Skip to main content Accessibility help
×
Home

Grain Orientation and Strain Measurements in Sub-Micron wide Passivated Individual Aluminum Test Structures

  • N. Tamura (a1), B. C. Valek (a2), R. Spolenak (a3), A. A. MacDowell (a1), R. S. Celestre (a1), H.A. Padmore (a1), W. L. Brown (a3), T. Marieb (a4), J. C. Bravman (a2), B. W. Batterman (a1) and J. R. Patel (a1) (a5)...

Abstract

An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains.

Copyright

References

Hide All
[1] Blech, I.A. and Sello, H., Physics of failure in Electronics Series proceedings (USAF Rome Air Development center Reliability, Rome, NY, 1967), Vol. 5, p. 496
[2] Arzt, E., Kraft, O., Nix, W.D., and Sanchez, J.E. Jr., J. Appl. Phys., 76, 1563 (1994)10.1063/1.357734
[3] Marieb, T., Flinn, P., Bravman, J. C., Gardner, D., and Madden, M., J. Appl. Physics, 78, 10261032 (1995)10.1063/1.360404
[4] Gungor, M. R. and Maroudas, D., J. Appl. Phys., 85, 22332246 (1999)10.1063/1.369532
[5] Park, Y.-J., Andleigh, V. K., and Thompson, C. V., J. Appl. Phys., 85, 35463555 (1999)10.1063/1.369714
[6] Gleixner, R.-J. and Nix, W. D., J. Appl. Phys., 86, 19321944 10.1063/1.370990
[7] Chung, J.-S., and Ice, G. E., J. Appl. Physics, 86, 52495255 (1999)10.1063/1.371507
[8] Chung, J.-S., Tamura, N., Ice, G. E., Larson, B. C., Budai, J. D., Lowe, W., Mat. Res. Soc. Symp. proc, 563, 169174 (1999)10.1557/PROC-563-169
[9] Tamura, N., Chung, J.-S., Ice, G.E., Larson, B. C., Budai, J. D., Tischler, J. Z., Yoon, M., Williams, E. L., and Lowe, W. P., Mat. Res. Soc. Symp. proc, 563, 175180 (1999)10.1557/PROC-563-175
[10] Spolenak, R., Barr, D.L., Gross, M.E., Evans-Lutherodt, K., Brown, W.L., Tamura, N., MacDowell, A.A., Celestre, R.S., H.A.Padmore, Patel, J.R., Valek, B.C., Bravman, J.C., Flinn, P., Marieb, T., Keller, R.R., Batterman, B.W., Mat. Res. Soc. Symp. Proc., submitted (2000)
[11] Noyan, I. C. and Cohen, J. B., Residual Stress: Measurement by Diffraction and Interpretation (Springer, New York, 1987), p. 33 10.1007/978-1-4613-9570-6
[12] Hosoda, T., Yagi, H., and Tsuchikawa, H., 1989 International reliability Physics Symposium Proceedings, IEEE, p. 202206 (1989).
[13] Besser, P. R., X-ray determination of thermal strains and stresses in thin aluminum films and lines, PhD, Stanford University (1993).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed