Skip to main content Accessibility help

Grain Boundary Diffusion in Co/Cu and Co/Cr Magnetic Thin Films

  • John G. Holl-Pellerin (a1), S.G.H. Anderson (a1), P.S. Ho (a1), K.R. Coffey (a1), J.K. Howard (a2) and K. Barmak (a3)...


X-ray photoelectron spectroscopy (XPS) has been used to investigate grain boundary diffusion of Cu and Cr through 1000 Å thick Co films in the temperature range of 325°C to 400°C. Grain boundary diffusivities were determined by modeling the accumulation of Cu or Cr on Co surfaces as a function of time at fixed annealing temperature. The grain boundary diffusivity of Cu through Co is characterized by a diffusion coefficient, D0gb, of 2 × 104 cm2/sec and an activation energy, Ea,gb, of 2.4 eV. Similarly, Cr grain boundary diffusion through Co thin films occurs with a diffusion coefficient, Do,gb, of 6 × 10-2cm2/sec and an activation energy, Ea,gb of 1.8 eV. The Co film microstructure has been investigated before and after annealing by x-ray diffraction and transmission electron Microscopy. Extensive grain growth and texturing of the film occurred during annealing for Co deposited on a Cu underlayer. In contrast, the microstructure of Co deposited on a Cr underlayer remained relatively unchanged upon annealing. Magnetometer Measurements have shown that increased in-plane coercivity Hc, reduced remanence squareness S, and reduced coercive squareness S* result from grain boundary diffusion of Cu and Cr into the Co films.



Hide All
1. Johnson, K.E., J. Appl. Phys. 69, 4932 (1991).
2. Coughlin, T., Pressesky, J., Lee, S., Heiman, N., Fisher, R.D., and Merchant, K., J. Appl. Phys. 67, 4689 (1990).
3. Johnson, K.E., Ivett, P.R., Thomas, D.R., Mirzamaani, M., Lambert, S.E., and Yogi, T., J. Appl. Phys. 67, 4686 (1990).
4. Duan, S.L., Artman, J.O., Hono, K., and Laughlin, D.E., J. Appl. Phys. 67, 4704 (1990).
5. Hwang, J.C.M. and Balluffi, R.W., J. Appl. Phys. 50, 1339 (1979).
6. Smardz, L., Köbler, U., and Zinn, W., J. Appl. Phys. 71, 5199 (1992).
7. Proctor, A. and Sherwood, P. M. A., Anal. Chem. 54, 13 (1982).
8. Harrison, L.G., Trans. Faraday Soc. 57, 1191 (1961).
9. Gupta, D., Campbell, D.R., and Ho, P.S. in Thin Films - Interdiffusions and Reactions, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (Wiley, New York, 1978), p. 161.
10. Kaur, I. and Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion (Ziegler Press, Stuttgart, 1989).
11. Seah, M.P. and Dench, W.A., Surf. Interface Anal. 1, 2 (1979).
12. Venables, J.A., Spiller, G.D.T., and Hanbücken, M., Rep. Prog. Phys. 47, 399 (1984).
13. Van der Voort, G.F., Metallography Principles and Practice (McGraw-Hill, New York, 1984), p. 449.
14. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, edited by Madelung, O. and Mehrer, H. (Springer-Verlag, Berlin, 1990), Group III, Vol. 26, p. 52.
15. Gertsriken, S.D., Yatsenko, T.K., and Slastnikova, L.F., Prob. Phys. Met. Metall. (Voprosy Fiz. Met. Metallov.), Akad. Nauk SSSR 9, 154 (1959).
16. Zhu, J. and Bertram, H.N., J. Appl. Phys. 63, 3248 (1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed