Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T18:59:31.851Z Has data issue: false hasContentIssue false

Grain Boundaries in Nanophase Materials and Conventional Polycrystals – Are They Distinct?

Published online by Cambridge University Press:  15 February 2011

S. C. Mehta
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ-07030
D. A. Smith
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ-07030
U. Erb
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Canada-K7L 3N6
Get access

Abstract

Nanograined materials, with grain sizes in the range of 1–20 nm, exhibit significant enhancement of grain boundary dependent properties such as yield strength, intergranular fracture toughness, grain boundary diffusivity, specific heat and thermal expansion coefficient. Measurements by indirect techniques suggest that the grain boundaries in nanophase materials are structurally different from the boundaries in their conventional polycrystal counterparts. Exploratory HRTEM observations, on the other hand, indicate that the grain boundary structure in nanophase materials is the same as that found in grain boundaries in conventional polycrystals. This paper reports an HRTEM investigation of the microstructure in electrodeposited nanocrystalline (nc) Ni1wt.%P alloy. These observations reveal the presence of about 8-10 vol. % porosity in the microstructure. There is also evidence for the presence of an amorphous phase at some grain boundaries and triple junctions. A comparison of grain boundary structures with boundaries in conventional materials suggests that grain boundaries in the nc Ni-P alloy are, for the most part, normal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weertman, J. R., Mater. Sci. and Engg. A 166, 161, 1993.Google Scholar
2. Gleiter, H., Phase Transition 24–26, 15, 1990.Google Scholar
3. Siegel, R. W., Annu. Rev. Mater. Sci. 21, 559, 1991.Google Scholar
4. Gleiter, H., Prog. Mater. Sci., 33, 223, 1989.Google Scholar
5. Howarth, J., Birringer, R. and Gleiter, H., Sol. State Comm. 62(5), 319, 1989.Google Scholar
6. Schumacher, S., Birringer, R., Strauss, R. and Gleiter, H., Acta Metall. 37, 2585, 1989.Google Scholar
7. Veprek, S., Iqbal, Z., Oswald, H. R. and Webb, A. P., J. Phys., C 14, 195, 1981.Google Scholar
8. Dagani, R., C & EN, 18, Nov. 1992.Google Scholar
9. Wagner, W., Wiedenmann, A., Petry, W., Geibel, A. and Gleiter, H., J. Mater. Res., 6(11), 2305, 1991.Google Scholar
10. Cowen, J. A., Stolzman, B., Averback, R. S. and Hahn, H., J. Appl. Phys., 61(8), 3317, 1987.Google Scholar
11. Huang, B., Tokinaze, N., Ishihara, K. N., Shingu, P. and Nasu, S., J. of Non Cryst. Sol. 117/118, 688, 1990.Google Scholar
12. Mutschele, T. and Kirchheim, R., Scripta Metall. 21, 135, 1987.Google Scholar
13. Mutschele, T. and Kirchheim, R., Scripta Metall. 21, 1101, 1987.Google Scholar
14. Ivanov, E., Mater. Sci. Forum 88–90, 475, 1992.Google Scholar
15. Eckert, J., Holzer, J. C. and Johnson, W. L., Scripta Metall. et Mater., 27, 1105, 1992.Google Scholar
16. Abe, Y. R., Holzer, J. C. and Johnson, W. L., 1991 MRS Fall Meeting, Boston, MA, Dec. 2-6, 1992 Google Scholar
17. Birringer, R., Hahn, H., Hofler, H., Karch, J. and Gleiter, H., Defect and Diffusion Forum 59, 17, 1988.Google Scholar
18. Gleiter, H., Nanostructured Materials 1, 1, 1992.Google Scholar
19. Zhu, X., Birringer, R., Herr, U. and Gleiter, H., Phys. Rev. 35(17), 9085, 1987.Google Scholar
20. Wurschum, R., Scheytt, M. and Schaefer, H. E., Phys. Stat. Solidi A 102, 119, 1987.Google Scholar
21. Herr, U., Jing, J., Birringer, R., Gonser, U. and Gleiter, H., Appl. Phys. Lett. 50(8), 472, 1987.Google Scholar
22. Jorra, E., Franz, H., Piesl, J., Wallner, G., Petry, W., Birringer, R., Gleiter, H. and Haubold, T., Phil. Mag. B 60(2), 159, 1989.Google Scholar
23. Haubold, T., Birringer, R., Lengeler, B. and Gleiter, H., Phys. Lett. A 135(8,9), 461, 1989.Google Scholar
24. Wunderlich, W., Ishida, Y. and Maurer, R., Scripta Metall. et Mater. 24, 403, 1990.Google Scholar
25. Thomas, G. J., Siegel, R. W. and Eastman, J. A., Scripta Metall. et Mater. 24, 201, 1990.Google Scholar
26. Tschope, A., Birringer, R. and Gleiter, H., J. Appl. Phys., 71(11), 5391, 1992.Google Scholar
27. Krakow, W., Wetzel, J. T. and Smith, D. A., Phil. Mag. A 53, 739, 1986.Google Scholar