Skip to main content Accessibility help
×
Home

Glass-Oxide Nanocomposites as Effective Thermal Insulation Materials

  • Qing Hao (a1), Minqing Li (a1), Garrett Joseph Coleman (a2), Qiang Li (a1) and Pierre Lucas (a2)...

Abstract

With extremely disordered atomic structures, a glass possesses a thermal conductivity k that approaches the theoretical minimum of its composition, known as the Einstein’s limit.1 Depending on the material composition and the extent of disorder, the thermal conductivity of some glasses can be down to 0.1-0.3 W/m∙K at room temperature,2,3 representing some of the lowest k values among existing solids. Such a low k can be further reduced by the interfacial phonon scattering within a nanocomposite that can be used for thermal insulation applications. In this work, nanocomposites hot pressed from the mixture of glass nanopowder (GeSe4 or Ge20Te70Se10) and commercial SiO2 nanoparticles, or pure glass nanopowder, are investigated for the potential k reduction. It is found that adding SiO2 nanoparticles will instead increase k if the measured k values for usually porous nanocomposites are converted into those for the corresponding solid (k Solid) with Eucken’s formula. In contrast, pure glass nano-samples always show k Solid data significantly reduced from that for the starting glass. For a pure GeSe4 nano-sample, k Solid would beat the Einstein’s limit for its composition.

Copyright

References

Hide All
1. Einstein, A., Ann. Phys. 35, 679 (1911).
2. Goncalves, A. P., Lopes, E. B., Rouleau, O., and Godart, C., J. Mater. Chem. 20, 1516 (2010).
3. Zhang, S. N., He, J., Zhu, T. J., Zhao, X. B., and Tritt, T. M., J. Non-Cryst. Solids. 355, 79 (2009).
4. Kittel, C. and Mceuen, P., Introduction to Solid State Physics (Wiley New York, ed. 7, 1976).
5. Cahill, D. G. and Pohl, R. O., Solid State Commun. 70, 927 (1989).
6. Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A., and George, S. M., Science 303, 989 (2004).
7. Chiritescu, C., Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P., Science 315, 351 (2007).
8. Mavrokefalos, A., Nguyen, N. T., Pettes, M. T., Johnson, D. C., and Shi, L., Appl. Phys. Lett. 91, 171912 (2007).
9. Kapitza, P. L., J. Phys. (Moscow) 4, 181(1941).
10 Goldsmid, H. J., Introduction to Thermoelectricity (Springer, 2009).
11. Eucken, A., Ceram. Abstr. 11, 576 (1931); A. Eucken, Ceram. Abstr. 12, 231(1933).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed