Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:10:34.530Z Has data issue: false hasContentIssue false

Glass-Forming Ability and Crystallization of High Purity Pd-Cu-Ni-P Alloy

Published online by Cambridge University Press:  17 March 2011

Nobuyuki Nishiyama
Affiliation:
Inoue Superliquid Glass Project, ERATO, JST, Sendai 982-0807, JAPAN
Mitsuhide Matsushita
Affiliation:
Inoue Superliquid Glass Project, ERATO, JST, Sendai 982-0807, JAPAN
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, JAPAN
Get access

Abstract

Glass-forming ability, thermal stability and nucleation behavior of a Pd40Cu30Ni10P20 alloy prepared using a high purity polycrystalline phosphorus are investigated. The critical cooling rate for glass formation for the high purity alloy is the same as that for the previous result, but the improvement of undercooling reaches about 80 K as compared with the fluxed ordinary alloy. In comparison with the non-fluxed alloy, the solidified structure of the present highly purified alloy is significantly different. The non-fluxed sample shows the characteristic “island-like” structure consisted of acicular fcc-Pd2Ni2P solid solution and Cu3Pd intermetallic compound. These acicular phases appear to be caused by the growth of quenched-in nuclei. In the isothermal experiment, nucleus density exhibits time dependence even at 683 K near the nose temperature. It is assumed that the crystallization behavior for the highly purified alloy is closer to homogeneous nucleation from quenched-in nuclei dominant behavior. In order to investigate the nucleation behavior, in-situ TEM observation was carried out. Spherical Pd15P2 particle with a diameter about 15 nm is observed, and this spherical region repeats generation and annihilation during isothermal annealing. The reason for the high glass-forming ability is discussed on the basis of the obtained results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 30 965, (1989).Google Scholar
2. Inoue, A., Yamaguchi, H., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 31 104 (1990).Google Scholar
3. Inoue, A., Ohtera, K., Kita, K. and Masumoto, T., Jpn. J. Appl. Phys., 27, L2248 (1988).Google Scholar
4. Inoue, A., Kohinata, M., Tsai, A. P. and Masumoto, T., Mater. Trans., JIM, 30, 378 (1989).Google Scholar
5. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 31, 929 (1990).Google Scholar
6. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans., JIM, 32 1005 (1991).Google Scholar
7. Peker, A. and Johnson, W. L., Appl. Phys. Lett., 63, 2342 (1993).Google Scholar
8. Inoue, A and Gook, J. S., Mater. Trans., JIM, 36, 1180 (1995).Google Scholar
9. Inoue, A., Zhang, T., Itoi, T. and Takeuchi, A., Mater. Trans., JIM, 38, 359 (1997).Google Scholar
10. Inoue, A. and Katsuya, A., Mater. Trans., JIM, 37, 1332 (1996).Google Scholar
11. Inoue, A., Nishiyama, N. and Matsuda, T., Mater. Trans., JIM, 37, 181(1996).Google Scholar
12. Nishiyama, N. and Inoue, A., Mater. Trans., JIM, 37, 1531 (1996).Google Scholar
13. Inoue, A., Nishiyama, N. and Kimura, H. M., Mater. Trans., JIM, 38, 179 (1997).Google Scholar
14. Nishiyama, N. and Inoue, A., Mater. Trans., JIM, 38, 464 (1997).Google Scholar
15. Nishiyama, N. and Inoue, A., Mater. Trans., JIM, 40, 64 (1999).Google Scholar
16. Kato, H., Kawamura, Y., Inoue, A. and Chen, H. S., to be submitted.Google Scholar
17. Park, C., Saito, M., Waseda, Y., Nishiyama, N. and Inoue, A., Mater. Trans., JIM, 40, 491 (1999).Google Scholar
18. Lüffler, J. F. and Johnson, W. L., Mater. Sci. Forum, in-press.Google Scholar
19. Nishiyama, N. and Inoue, A., Acta Mater., 47, 1487 (1999).Google Scholar
20. Lüffler, J. F., Schroers, J. and Johnson, W. L., Appl. Phys. Lett., 77, 681 (2000).Google Scholar
21. Haruyama, O., Kimura, H. M., Nishiyama, N. and Inoue, A., J. Non-Cryst. Solids, 250–252, 781 (1999).Google Scholar
22. Haruyama, O., Kimura, H. M., Inoue, A., , A. and Nishiyama, N., Appl. Phys. Lett., 76, 2026 (2000).Google Scholar
23. Nakajima, H., Kojima, T., Zumkley, T., Nishiyama, N. and Inoue, A., Proc. Int. Conf. on Solid-Solid Phase Transformation '99 (JIMIC-3), ed. Koiwa, M., et al. JIM, 1999, pp.411.Google Scholar
24. Nishiyama, N., Hirino, M. and Inoue, A., Mater. Trans., JIM, in press.Google Scholar
25. Nishiyama, N., Horino, M., Haruyama, O. and Inoue, A., Appl. Phys. Lett., 76, 3914 (2000).Google Scholar
26. Nishiyama, N., Inoue, A. and Jiang, J. Z., Appl. Phys. Lett., to be submitted.Google Scholar
27. Kim, J. H., Kim, S. G. and Inoue, A., Acta Mater., 49, 615 (2001).Google Scholar
28. Xu, Y. and Wang, W., J. Appl. Phys., 69(6), 3537 (1991).Google Scholar
29. Nishiyama, N. and Inoue, A., Proc. of Int. Conf. on MRS fall meeting (Boston), ed. Johnson, W. L., et al. 1998, Vol. 554, pp.125.Google Scholar
30. Grehman, A. J. and Greer, A. L., Acta Metall., 32, 323 (1984).Google Scholar
31. Nishiyama, N. and Inoue, A., unpublished research.Google Scholar
32. Lin, X. H., Ph. D thesis, California Institute of Technology, 1997.Google Scholar
33. Turnbull, D., Contemp. Phys., 10, 473 (1969).Google Scholar
34. Uhlmann, D. R., J. Non-Cryst. Solids, 7, 337 (1972).Google Scholar
35. Küster, U. and Meinhardt, J., Mater. Sci. Eng., A178, 105 (1991).Google Scholar
36. Imafuku, M., Sato, S., Koshiba, H., Matsubara, E. and Inoue, A., Mater. Trans., JIM, 41, 424 (2000).Google Scholar