Skip to main content Accessibility help

Giant Magnetoresistance Calculated from First Principles

  • W. H. Butler (a1), James M. MacLaren (a2) and X.-G. Zhang (a3)


The Layer Korringa Kohn Rostoker-Coherent Potential Approximation technique was used to calculate the low temperature Giant Magnetoresistance from first principles for Co|Cu and permalloy|Cu superlattices. Our calculations predict large giant Magnetoresis-tance ratios for Co|Cu and extremely large ratios for permalloy|Cu for current perpendicular to the layers. Mechanisms such as spin-orbit coupling which mix spin channels are expected to greatly reduce the GMR effect for permalloy|Cu.



Hide All
1. Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., and Petroff, F., Phys. Rev. Lett. 61, 2472 (1988).
2. Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. 39, 4828 (1989).
3. Parkin, S. S. P., More, N., Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).
4. Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).
5. Chaiken, A., Tritt, T. M., Gillespie, D. J., Krebs, J. J., Lubitz, P., J. Appl. Phys. 69, 4798 (1991).
6. Grünberg, P., Demokritov, S., Fuss, A., Volil, M., and Wolf, J. A., J. Appl. Phys. 69, 4789 (1991).
7. Dieny, B., Speriosu, V. S., Metin, S., Parkin, S. S. P., Guiney, B. A., Baumgart, P., and Wilhoit, D. R., J. Appl. Phys. 69, 4774 (1991).
8. Dieny, B., Speriosu, V. S., Parkin, S. S. P., Guiney, B. A., Wilhoit, D. R., and Mauri, D., Phys. Rev. B 43, 1297 (1991).
9. Camely, R. E., and Barnás, J., Phys. Rev. Lett. 63, 664 (1989).
10. Barnás, J., Fuss, A., Carnley, R. E., Grünberg, P., and Zinn, W.. Phys. Rev. B 42, 8110 (1990).
11. Fuchs, K., Proc. Cambridge Philos. Soc. 34, 100 (1938).
12. Sondheimer, E. H., Adv. Phys. 1, 1 (1952).
13. Levy, P. M., Zhang, S., and Fert, A., Phys. Rev. Lett. 65, 1643 (1990).
14. Zhang, S., Levy, P. M., J. Appl. Phys. 69, 4786 (1991).
15. MacLaren, J. M., Crampin, S., Vvedensky, D. D. and Pendry, J. B., Phys. Rev. B 40, 12164 (1989).
16. Hohenberg, P. and Kohn, W., Phys. Rev. 136 B, 864 (1964).
17. Kohn, W. and Sham, L. J., Phys. Rev. B 140, A1133 (1965).
18. Soven, P., Phys. Rev. 156, 809 (1967).
19. Taylor, D. W., Phys. Rev. 156 1017 (1967).
20. Faulkner, J. S., Prog. Mat. Sci. 27, 1 (1982).
21. Butler, W. H., Phys. Rev. B, 31, 3260 (1985).
22. Butler, W.H. and Stocks, G. M., Phys. Rev. B, 29, 4217 (1984).
23. Swihart, J. C., Butler, W. H., Stocks, G. M., Nicholson, D. M., and Ward, R. C., Phys. Rev. Lett. 57, 1181 (1986).
24. van den Berg, G. J., van Hook, J., Knook, B., Proc. L.T. 10 4, 272 (1966).
25. Hugel, J., J. Phys. F 3, 1723 (1973).
26. Smit, J., Physica, 21, 877 (1955).
27. Mertig, I., Zeller, R., and Dederichs, P. H., in Application of Multiple Scattering Theory to Materials Science, edited by Butler, W. H., Gonis, A., Dederichs, P. H., and Weaver, R., MRS Symposia Proceedings No. 253 (Materials Research Society, Pittsburg, 1992)
28. Farrell, T. and Greig, D., J. Phys. C: Solid St. Phys. 1, 1359 (1968).

Giant Magnetoresistance Calculated from First Principles

  • W. H. Butler (a1), James M. MacLaren (a2) and X.-G. Zhang (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed