Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T08:39:19.273Z Has data issue: false hasContentIssue false

A General Nonhydrolytic Sol‐Gel Route to Oxides

Published online by Cambridge University Press:  21 February 2011

Sylvie Acosta
Affiliation:
UMR 44, CNRS/ Rhône‐Poulenc/ Université Montpellier Π, case 007, Université Montpellier Π, Place E. Bataillon, 34095 Montpellier cedex 5, France.
Pascal Arnal
Affiliation:
UMR 44, CNRS/ Rhône‐Poulenc/ Université Montpellier Π, case 007, Université Montpellier Π, Place E. Bataillon, 34095 Montpellier cedex 5, France.
Robert J.P. Corriu
Affiliation:
UMR 44, CNRS/ Rhône‐Poulenc/ Université Montpellier Π, case 007, Université Montpellier Π, Place E. Bataillon, 34095 Montpellier cedex 5, France.
Dominique Leclercq
Affiliation:
UMR 44, CNRS/ Rhône‐Poulenc/ Université Montpellier Π, case 007, Université Montpellier Π, Place E. Bataillon, 34095 Montpellier cedex 5, France.
P. Hubert Mutin
Affiliation:
UMR 44, CNRS/ Rhône‐Poulenc/ Université Montpellier Π, case 007, Université Montpellier Π, Place E. Bataillon, 34095 Montpellier cedex 5, France.
Andre Vioux
Affiliation:
UMR 44, CNRS/ Rhône‐Poulenc/ Université Montpellier Π, case 007, Université Montpellier Π, Place E. Bataillon, 34095 Montpellier cedex 5, France.
Get access

Abstract

A nonhydrolytic sol‐gel route based on the condensation between chlorides and oxygen donors such as ethers and alkoxides is presented. Four examples, silica, alumina, titania and binary oxides in the Al/Si system show that this is a general route. The mechanism of this condensation is completely different from the one of classical sol‐gel process, since it implies nucleophilic substitution at the carbon center instead of the metal center. As a consequence, the differences in reactivity between different metals are reduced. In addition, the structure of the precursors may be retained in the gel. Thus, the nonhydrolytic sol‐gel process is very efficient for the preparation of homogeneous bicomponent oxides. Futhermore, nonhydrated gels are formed, which allowed us to prepare amorphous aluminas with high surface areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Livage, J., Henry, M. and Sanchez, C., Prog. Solid St. Chem. 18, 259(1988).Google Scholar
2 Léaustic, A. and Riman, R.E.. J. Non‐Cryst. Solids 135, 259 (1991).Google Scholar
3 Guizard, C., Stitou, M., Larbot, A., Cot, L. and Rouvière, J., in Better Ceramics through Chemistry Π edited by Blinker, C.J., Clark, D. E. and Ulrich, D.R. (Mater. Res. Soc. Proc. 121, Pittsburg, PA, 1988) p. 115.Google Scholar
4 Kamiya, K., Sakka, S., Tatemichi, Y. J. Mater. Sei. 15, 1765 (1980).Google Scholar
5 Dislich, H., Angew. Chem. Int. Ed. Engl. 10, 363 (1971).Google Scholar
6 Yoldas, B.E., J. Mater. Sci. 12, 1203 (1977); 14, 1843 (1979).Google Scholar
7 Pouxviel, J.C., Boileau, J. P., Sanger, S., Hubert‐Pfalzgraf, L., in Better Ceramics Trough Chemistry IL edited by Brinker, C.J., Clark, D. E. and Ulrich, D.R. (Mater. Res. Soc. Proc. 73, Pittsburg, PA, 1984) p 151.Google Scholar
8 Goel, S.C., Chiang, M.Y., Gibbons, P. C. and Buhro, W.E., in Better ceramic through chemistry V edited by Hampten‐Smith, M.J., Klemperer, W.G. and Brinker, C.J. (Mater. Res. Soc. Proc. 271, Pittsburg, PA, 1992) pp 313.Google Scholar
9 Gerrard, W. and Kilburn, K.D., J. Chem. Soc. 1256, 307.Google Scholar
10 Norris, J.F. and Sturgis, B.M., J. Amer. Chem. Soc. 61, 1413 (1939).Google Scholar
11 Bhatt, M.V., Synthesis 1983, 249.Google Scholar
12 Johnson, F., in Friedel‐Crafts and related reactions, edited by Olah, G.A. (J. Wiley & Sons, 1965, volume IV, Miscellaneous Reactions) p 911.Google Scholar
13 Corriu, R.J.P., Leclercq, D., Lefèvre, P., Mutin, P.H. and Vioux, A.. J. Non‐Cryst. Solids 146, 301 (1992); J. Mater. Chem. 2, 673 (1992); Chem. Mater. 4, 961 (1992).Google Scholar
14 Bradley, D.C., Mehrotra, R.C. and Gaul, D.P., in Metal Alkoxides. (Academic Press, London, 1978) p. 16, 17.Google Scholar
15 Gerrard, W. and Jones, J.V., J. Chem. Soc., 1952, 1690.Google Scholar
16 Schwartz, R. and Kucher, W., Chem. Ber. 89, 169 (1956).Google Scholar
17 Zappel, A., J. Am. Chem. Soc. 77, 4228 (1955).Google Scholar
18 Bourget, L., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., First European Worshop on Hybrid Organic‐Inorganic Materials, edited by Sanchez, C. and Ribot, F. (Paris 1993) pp 305, 308.Google Scholar
19 Bourget, L., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., to be published.Google Scholar
20 Acosta, S., Corriu, R.J.P., Leclercq, D., Lefèvre, P., Mutin, P.H. and Vioux, A., J. Non‐Cryst. Solids, accepted.Google Scholar
21 Tayaa, H., Mosset, A., Galy, J., Eur., J. Solid State Inorg. Chem 29, 27 (1992).Google Scholar
22 Slade, R.C.T., Southern, J.C. and Thompson, I.M., J. Mater. Chem. 1, 563 (1991); 1, 875 (1991).Google Scholar
23 Chen, F.R., Davis, J.G. and Fripiat, J.J., J. Catal. 133, 263 (1992).Google Scholar
24 Wood, T.E., Siedle, A.R., Hill, J.R., Skarjune, R.P. and Goodbrake, C.J., in Better Ceramics through Chemistry IV. edited by Zelinski, B.J.J., Brinker, C.J., Clark, D. E. and Ulrich, D.R. (Mat. Res. Soc. Symp. Proc. 180, Pittsburg, PA., 1990) p.97.Google Scholar
25 Yanovskii, A.I., Kozunov, V.A., Turova, N. Ya., Furmanova, N.G., Stuchkov, Yu. T., Dokl. Akad. Nauk SSSR, 244, 119 (1979).Google Scholar
26 Dalibart, M. et al. Derouault, J., Coordination Chemistry Reviews, 74, 151 (1986).Google Scholar
27 Kriz, O., Casensky, B., Lycka, A., Fusek, J., Hermanek, S., J. Mag. Reson. 60, 375 (1984).Google Scholar
28 Bradley, D.C., Hancock, D.C. and Wardlaw, W., J. Chem. Soc., 1952 2773.Google Scholar
29 Dijkgraaf, C. and Rousseau, J.P.G., Spectrochim. Acta, 24A, 1213 (1968).Google Scholar
30 Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., to be published.Google Scholar
31 Hamilton, P.M., McBeth, R., Bekebrede, W. and Sisler, H. H., J. Amer. Chem. Soc. 75, 2881 (1953).Google Scholar
32 Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., in Better Ceramics through Chemistry VI.Google Scholar
33 Engelhardt, G. and Michel, D., in High‐Resolution Solid‐State NMR of Silicates and Zeolites (J. Wiley & Sons, New‐York, 1987) p 147149.Google Scholar