Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T01:02:37.307Z Has data issue: false hasContentIssue false

Gels and Gel-Derived Glasses in the Na2o-B2o3-Sio2 System

Published online by Cambridge University Press:  15 February 2011

Shyama P. Mukherjee*
Affiliation:
Battelle's Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201
Get access

Abstract

The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na 2o-B2o3-SiO2 system are described. Preparation is based on tLe polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent “glass” without melting are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dislich, H., Amgew Chemie Int. Edition 10, 363 (1971).10.1002/anie.197103631Google Scholar
2.Kamiya, K., Sakka, S. and Yamanaka, I., 10th Int. Congr. Glass, 14, 44 (1974).Google Scholar
3.Mukherjee, S. P., Zarzycki, J., Traverse, J. P.. J. Mat. Sc. 11, 341 (1976).Google Scholar
4.Carturan, G., Goltardi, V. and Graziani, M., J. Non-cryst. Solids, 29, 41 (1978).Google Scholar
5.Yoldas, B. E., J. Mat. Sc., 14, 1843 (1979).Google Scholar
6.Mukherjee, S. P., J. Non-cryst. Solids, 42, 477 (1980).Google Scholar
7.Brinker, C. J. and Mukherjee, S. P., J. Mat. Sc., 16, 1980 (1981).Google Scholar
8.Mukherjee, S. P. and Neilson, G. F.. Presented at the 83rd Ann. Meeting Amer. Cer. Soc., Washington, DC (1981).Google Scholar
9.Noll, W., Chemistry and Technology of Silicones (Academic Press, New York) (1968).Google Scholar
10.Iler, R. K., Colloid Chemistry of Silica and Silicates (Cornell Univ. Press, Ithaca, New York) (1955).Google Scholar
11.Peace, B. W., Mayhan, K. G. and Montle, J. F., Polymer, 14, 421 (1973).Google Scholar
12.Colclough, T., Gerrard, W., Lappert, M. F., J. Chem. Soc. 907 (1955).Google Scholar
13.Schlessinger, H. I., Brown, H. C., Mayfield, D. L., Gilbreath, J. R., J. Am. Chem. Soc., 75, 186 (1953).10.1021/ja01097a049Google Scholar
14.Okkerse, C., deBoer, J. H. and Cyrot, M., J. Chim. Phys., 57, 534 (1960).10.1051/jcp/1960570534Google Scholar
15.Simmons, C. J., J. Am. Cer. Soc., 64, 200 (1981).Google Scholar
16. Wright and Hunter, J. Am. Chem. Soc., 69, 803 (1947).10.1021/ja01196a018Google Scholar
17.Lazarev, A. N. and Vovkov, M. G., Optics and Spectroscopy, 8, 325 (1960).Google Scholar
18.Mukherjee, S. P. and Zarzycki, J., J. Am. Cer. Soc., 62, 1 (1979).Google Scholar
19.Bassett, D. R., Bouder, E. A. and Zettlemoyer, A. C., J. Mat. Sc., 7, 1379 (1972).Google Scholar
20.Mougey, C., Francois-Resselts, J. and Imelik, B., in Structure and Properties of Porous Materials. Ed. Everett, D. H. and Stone, F. S. (Butterworth, London, 1958), p. 266.Google Scholar
21.Mukherjee, S. P., Zarzycki, J., Badie, J. M. and Traverse, J. P.. J. Non-cryst. Solids, 20, 453 (1976).Google Scholar