Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T18:05:40.431Z Has data issue: false hasContentIssue false

Gate Oxynitride Grown in N2O and Annealed in NO Using Rapid Thermal Processing

Published online by Cambridge University Press:  15 February 2011

S. C. Sun
Affiliation:
Silicon ULSI Nanotechnology Group, Department of Electronics Engineering and Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
C. H. Chen
Affiliation:
Silicon ULSI Nanotechnology Group, Department of Electronics Engineering and Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
J. C. Lou
Affiliation:
Silicon ULSI Nanotechnology Group, Department of Electronics Engineering and Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
L. W. Yen
Affiliation:
Macronix International Co., Hsinchu, Taiwan, R.O.C.
C. J. Lin
Affiliation:
Macronix International Co., Hsinchu, Taiwan, R.O.C.
Get access

Abstract

In this paper a new technique for the formation of high quality ultrathin gate dielectrics is proposed. Gate oxynitride was first grown in N2O and then annealed by in-situ rapid thermal NO-nitridation. This approach has the advantage of providing a tighter nitrogen distribution and a higher nitrogen accumulation at or near the Si-SiO2 interface than either N2O oxynitride or nitridation of SiO2 in the NO ambient. It is applicable to a wide range of oxide thickness because the initial rapid thermal N2O oxidation rate is slow but not as self-limited as NO oxidation. The resulting gate dielectrics have reduced charge trapping, lower stress-induced leakage current and significant resistance to interface state generation under electrical stress

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Green, M.L., Brasen, D., Evans-Lutterodt, K.W., Feldman, L.C., Krisch, K., Lennard, W., Tang, H.-T., Manchanda, L., Tang, M.-T., Appl. Phys. Lett., 65, 848 (1994)Google Scholar
2. Tang, H.T., Lennard, W.N., Zinke-Allmang, M., Mitchell, I.V., Feldman, L.C., Green, M.L., and Brasen, D., Appl. Phys. Lett., 64, 3473 (1994)Google Scholar
3. Hwang, H., Ting, W., Maiti, B., Kwong, D.L., and Lee, J., Appl. Phys. Lett., 57, 3 (1990)Google Scholar
4. Fukuda, H., Arakawa, T., and Ohno, S., Electron Lett., 26, 1505 (1990)Google Scholar
5. Joshi, A.B., Ahn, J., and Kwong, D.L., IEEE Electron Dev. Lett., 14, 560 (1993)Google Scholar
6. Tobin, P.J., Okada, Y., Lahkotia, V., Ajuria, S.A., Feil, W.A., and Hegde, R.I., Dig. Tech. Papers 1993 Symp. of VLSI Technol., 51 (1993)Google Scholar
7. Okada, Y., Tobin, P.J., Reid, K.G., Hegde, R.I., Maiti, B., and Ajuria, S.A., IEEE Trans. Electron Devices, 41, 1608 (1994)Google Scholar
8. Okada, Y., Tobin, P.J., Reid, K.G., Hegde, R.I., Maiti, B., and Ajuria, S.A., Dig. Tech. papers 1994 Symp. of VLSI Technol., 105 (1994)Google Scholar
9. Harrison, H.B., Misiura, A., Dimitrijev, S., Sweatman, D., Yao, Z.-Q., and Yeow, Y.T., MRS Symposia Proceedings, 342, 151 (1994)Google Scholar
10. Yao, Z.-Q., Harrison, H.B., Dimitrijev, S., and Sweatman, D., Appl. Phys. Lett., 64, 3584 (1994)Google Scholar
11. Bhat, M., Wristers, D., Yan, J., Han, L.K., Fulford, J., and Kwong, D.L., IEDM Tech. Dig., 329 (1994)Google Scholar
12. Bhat, M., Kim, J., Yan, J., Yoon, G.W., Han, L.K., and Kwong, D.L., IEEE Electron Dev. Lett., 15, 421 (1994)Google Scholar
13. Naruke, K., Taguchi, S., and Wada, M., IEDM Tech. Dig., 424 (1988)Google Scholar
14. Hori, T., IEEE Trans. Electron Devices, 37, 2058 (1990)Google Scholar